Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912871

RESUMO

Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.

2.
ChemSusChem ; 17(6): e202301337, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931228

RESUMO

Recently, tandem cathodic reactions have been demonstrated in non-aqueous solvents to couple CO2 reduction to a secondary reaction to create novel species that are not produced in aqueous CO2 electrolysis. One reaction that can be performed with high selectivity and durability is the electrochemical conversion of CO2 to formic acid and in-situ esterification with methanol to produce methyl formate. However, the translation to a high-performance flow electrolyzer is far from trivial, as the non-aqueous catholyte leads to reactor challenges including flooding the gas diffusion electrode. Here, a two-membrane flow electrolyzer with both anion and cation exchange membranes was used with flowing methanol catholyte and aqueous anolyte. This design prevented methanol from flooding the cathode, which was a pervasive limiting issue for electrolyzers with a single membrane. Methyl formate production at 42.9 % faradaic efficiency was achieved with pure methanol in a flow electrolyzer with stable performance beyond 80 min. However, low-water-content catholyte compositions also led to increased cell resistance and lower operating current densities. Thus, with the present ionomer materials there is a tradeoff between methyl formate selectivity and current density depending on water concentration, highlighting a need for new ionomers tailored for desirable non-aqueous solvents such as methanol.

3.
ChemSusChem ; 15(5): e202102289, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34979055

RESUMO

The conversion of waste CO2 to value-added chemicals through electrochemical reduction is a promising technology for mitigating climate change while simultaneously providing economic opportunities. The use of non-aqueous solvents like methanol allows for higher CO2 availability and novel products. In this work, the electrochemistry of CO2 reduction in acidic methanol catholyte at a Pb working electrode was investigated while using a separate aqueous anolyte to promote a sustainable water oxidation half-reaction. The selectivity among methyl formate (a product unique to reduction of CO2 in methanol), formic acid, and formate was critically dependent on the catholyte pH, with higher pH conditions leading to formate and low pH favoring methyl formate. The potential dependence of the product distribution in acidic catholyte was also investigated, with a faradaic efficiency for methyl formate as high as 75 % measured at -2.0 V vs. Ag/AgCl.


Assuntos
Dióxido de Carbono , Metanol , Catálise , Técnicas Eletroquímicas , Eletrólitos , Ésteres do Ácido Fórmico , Concentração de Íons de Hidrogênio , Chumbo
4.
J Phys Chem Lett ; 12(5): 1374-1383, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33507088

RESUMO

The interfacial electrochemistry of reversible redox molecules is central to state-of-the-art flow batteries, outer-sphere redox species-based fuel cells, and electrochemical biosensors. At electrochemical interfaces, because mass transport and interfacial electron transport are consecutive processes, the reaction velocity in reversible species is predominantly mass-transport-controlled because of their fast electron-transfer events. Spatial structuring of the solution near the electrode surface forces diffusion to dominate the transport phenomena even under convective fluid-flow, which in turn poses unique challenges to utilizing the maximum potential of reversible species by either electrode or fluid characteristics. We show Coulombic force gated molecular flux at the interface to target the transport velocity of reversible species; that in turn triggers a directional electrostatic current over the diffusion current within the reaction zone. In an iron-based redox flow battery, this gated molecular transport almost doubles the volumetric energy density without compromising the power capability.

5.
Phys Chem Chem Phys ; 20(33): 21724-21731, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30105322

RESUMO

Hydrazine is a pollutant with high hydrogen content, offering tremendous possibilities in a direct hydrazine fuel cell (DHFC) as it can be converted into electricity via benign end products. Due to the inner sphere nature of half-cell chemistries, hydrazine cross over triggers parasitic chemistry at the Pt-based air cathode of a state-of-the-art DHFC, overly complicating the already sluggish electrode kinetics at the positive electrode. Here, we illustrate that by altering the interfacial chemistry of the catholyte from inner sphere to outer sphere, the parasitic chemistry can be dissociated from the redox chemistry of the electron acceptor and the hybrid fuel cell can be driven by simple carbon-based cathodes. The reversible nature of an outer sphere catholyte leads to a hybrid fuel cell redox flow battery with performance metrics ∼4 times higher than a Pt-based DHFC-air configuration.

6.
J Phys Chem Lett ; 9(10): 2492-2497, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688728

RESUMO

We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

7.
J Phys Chem Lett ; 9(2): 388-392, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29294292

RESUMO

State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm2 at a peak current density of 160 mA/cm2 with a cathodic H2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

8.
J Phys Chem Lett ; 8(15): 3523-3529, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28686441

RESUMO

Molecular oxygen, the conventional electron acceptor in fuel cells poses challenges specific to direct alcohol fuel cells (DAFCs). Due to the coupling of alcohol dehydrogenation with the scission of oxygen on the positive electrode during the alcohol crossover, the benchmark Pt-based air cathode experiences severe competition and depolarization losses. The necessity of heavy precious metal loading with domains for alcohol tolerance in the state of the art DAFC cathode is a direct consequence of this. Although efforts are dedicated to selectively cleave oxygen, the root of the problem being the inner sphere nature of either half-cell chemistry is often overlooked. Using an outer sphere electron acceptor that does not form a bond with the cathode during redox energy transformation, we effectively decoupled the interfacial chemistry from parasitic chemistry leading to a DAFC driven by alcohol passive carbon nanoparticles, with performance metrics ∼8 times higher than Pt-based DAFC-O2.

9.
Phys Chem Chem Phys ; 19(11): 7751-7759, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28262873

RESUMO

Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H2-O2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...