Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843466

RESUMO

Low-valent main group species have been evolving as powerful alternatives to transition metals over the years due to their advantages such as low toxicity and high abundance. However, the inability of main group elements to mimic the redox-switching property of transition metals often limits their role as catalysts. Here, we demonstrate the use of a low-valent phosphorus(I) compound as an efficient metal-free catalyst for the synthesis of biologically relevant γ-butyrolactones through dual activation under ambient reaction conditions. The highly nucleophilic phosphorus(I) center plays a key role in leading to this transformation. Extensive experimental and theoretical studies suggest that the phosphorus center exhibits facile switching between its reduced state [P(I)] and its oxidized state [P(III)] during this transformation, mimicking the behavior of transition metals.

2.
Chem Sci ; 14(19): 5079-5086, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206403

RESUMO

Herein, we report the first catalytic methylation of primary amides using CO2 as a C1 source. A bicyclic (alkyl)(amino)carbene (BICAAC) exhibits dual role by activating both primary amide and CO2 to carry out this catalytic transformation which enables the formation of a new C-N bond in the presence of pinacolborane. This protocol was applicable to a wide range of substrate scopes, including aromatic, heteroaromatic, and aliphatic amides. We successfully used this procedure in the diversification of drug and bioactive molecules. Moreover, this method was explored for isotope labelling using 13CO2 for a few biologically important molecules. A detailed study of the mechanism was carried out with the help of spectroscopic studies and DFT calculations.

3.
Chem Commun (Camb) ; 58(18): 3047-3050, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156960

RESUMO

Bicyclic (alkyl)(amino)carbene (BICAAC) is introduced as a metal-free catalyst for the reduction of various nitriles to the corresponding amine hydrochloride salts in the presence of pinacolborane. Mechanistic investigations combining experiments and DFT calculations suggest a B-H addition to the carbene center, which acts as a carrier of the hydride source.

4.
Chem Commun (Camb) ; 57(43): 5282-5285, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33942839

RESUMO

A storable bicyclic (alkyl)(amino)carbene (BICAAC) stabilized two coordinate zinc(0) complex [(BICAAC)2Zn] (2) was synthesized. DFT calculations reveal that BICAAC plays a decisive role in imparting the stability to 2. This complex activates the C(sp3)-Cl bond of trityl chloride generating the Gomberg's free radical with greater efficiency than metallic Zn powder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...