Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8536, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595816

RESUMO

Antifreeze proteins (AFPs) inhibit ice growth within fish and protect them from freezing in icy seawater. Alanine-rich, alpha-helical AFPs (type I) have independently (convergently) evolved in four branches of fishes, one of which is a subsection of the righteye flounders. The origin of this gene family has been elucidated by sequencing two loci from a starry flounder, Platichthys stellatus, collected off Vancouver Island, British Columbia. The first locus had two alleles that demonstrated the plasticity of the AFP gene family, one encoding 33 AFPs and the other allele only four. In the closely related Pacific halibut, this locus encodes multiple Gig2 (antiviral) proteins, but in the starry flounder, the Gig2 genes were found at a second locus due to a lineage-specific duplication event. An ancestral Gig2 gave rise to a 3-kDa "skin" AFP isoform, encoding three Ala-rich 11-a.a. repeats, that is expressed in skin and other peripheral tissues. Subsequent gene duplications, followed by internal duplications of the 11 a.a. repeat and the gain of a signal sequence, gave rise to circulating AFP isoforms. One of these, the "hyperactive" 32-kDa Maxi likely underwent a contraction to a shorter 3.3-kDa "liver" isoform. Present day starry flounders found in Pacific Rim coastal waters from California to Alaska show a positive correlation between latitude and AFP gene dosage, with the shorter allele being more prevalent at lower latitudes. This study conclusively demonstrates that the flounder AFP arose from the Gig2 gene, so it is evolutionarily unrelated to the three other classes of type I AFPs from non-flounders. Additionally, this gene arose and underwent amplification coincident with the onset of ocean cooling during the Cenozoic ice ages.


Assuntos
Mudança Climática , Linguado , Animais , Proteínas Anticongelantes/metabolismo , Peixes/genética , Peixes/metabolismo , Linguado/genética , Linguado/metabolismo , Congelamento , alfa-Fetoproteínas
2.
J Phys Chem B ; 119(40): 12808-15, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26371748

RESUMO

Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.


Assuntos
Proteínas Anticongelantes/química , Cristalografia/métodos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Proteínas Recombinantes de Fusão/química
3.
FEBS J ; 276(4): 973-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19215300

RESUMO

The two main mammalian calpains, 1 and 2, are heterodimers of a large 80 kDa and a small 28 kDa subunit that together bind multiple calcium ions during enzyme activation. The main contact between the two subunits of these intracellular cysteine proteases is through a pairing of the fifth EF-hand of their C-terminal penta-EF-hand (PEF) domains. From modeling studies and observation of crystal structures, it is not obvious why these calpains form heterodimers with the small subunit rather than homodimers of the large subunit, as suggested for calpain 3 (p94). Therefore, we have used a differential tagging system to determine which of the other PEF domain-containing calpains form heterodimers and which form homodimers. His6-tagged PEF domains of calpains 1, 3, 9 and 13 were coexpressed with the PEF domain of the small subunit that had been tagged with an antifreeze protein. As predicted, the PEF domain of calpain 1 heterodimerized and that of calpain 3 formed a homodimer. The PEF domain of digestive tract-specific calpain 9 heterodimerized with the small subunit, and that of calpain 13, prevalent in lung and testis, was mainly found as a homodimer with a small amount of heterodimer. These results indicate whether recombinant production of a particular calpain requires coexpression of the small subunit, and whether this calpain is likely to be active in a small subunit knockout mouse. Furthermore, as the endogenous inhibitor calpastatin binds to PEF domains on the large and small subunit, it is less likely that the homodimeric calpains 3 and 13 with two active sites will bind or be silenced by calpastatin.


Assuntos
Calpaína/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Calpaína/química , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
4.
Cryobiology ; 57(3): 292-6, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18938150

RESUMO

A lipoprotein-like antifreeze protein (type IV AFP) has previously been isolated only from the blood plasma of the longhorn sculpin. However, the plasma antifreeze activity in all individuals of this species tested from Newfoundland and New Brunswick waters ranges from low to undetectable. A close relative of the longhorn sculpin, the shorthorn sculpin, does have appreciable antifreeze activity in its blood but this is virtually all accounted for by the alpha-helical, alanine-rich type I AFP, other isoforms of which are also present in the skin of both fishes. We have characterized a putative ortholog of type IV AFP in shorthorn sculpin by cDNA cloning. This 12.2-kDa Gln-rich protein is 87% identical to the longhorn sculpin's type IV AFP. Recombinant versions of both orthologs were produced in bacteria and shown to have antifreeze activity. Immunoblotting with antibodies raised to type IV AFP shows this protein present in longhorn sculpin plasma at levels of less than 100 microg/mL, which are far too low to protect the blood from freezing at the temperature of icy seawater. This confirms the results of direct antifreeze assays on the plasmas. It appears that type IV AFP has the potential to develop as a functional antifreeze in these fishes but may not have been selected for this role because of the presence of type I AFP. Consistent with this hypothesis is the observation that the type IV AFP gene has not been amplified the way functional antifreeze protein genes have in all other species examined.


Assuntos
Proteínas Anticongelantes Tipo IV/sangue , Proteínas Anticongelantes Tipo IV/metabolismo , Peixes/sangue , Peixes/metabolismo , Animais , Proteínas Anticongelantes Tipo IV/química , Immunoblotting , Novo Brunswick , Terra Nova e Labrador , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
5.
FEBS J ; 272(17): 4439-49, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16128813

RESUMO

The recent discovery of a large hyperactive antifreeze protein in the blood plasma of winter flounder has helped explain why this fish does not freeze in icy seawater. The previously known, smaller and much less active type I antifreeze proteins cannot by themselves protect the flounder down to the freezing point of seawater. The relationship between the large and small antifreezes has yet to be established, but they do share alanine-richness (> 60%) and extensive alpha-helicity. Here we have examined two other righteye flounder species for the presence of the hyperactive antifreeze, which may have escaped prior detection because of its lability. Such a protein is indeed present in the yellowtail flounder judging by its size, amino acid composition and N-terminal sequence, along with the previously characterized type I antifreeze proteins. An ortholog is also present in American plaice based on the above criteria and its high specific antifreeze activity. This protein was purified and shown to be almost fully alpha-helical, highly asymmetrical, and susceptible to denaturation at room temperature. It is the only detectable antifreeze protein in the blood plasma of the American plaice. Because this species appears to lack the smaller type I antifreeze proteins, the latter may have evolved by descent from the larger antifreeze.


Assuntos
Proteínas Anticongelantes/química , Linguado/sangue , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Proteínas Anticongelantes/sangue , Proteínas Anticongelantes/genética , Canadá , Dicroísmo Circular , Linguado/genética , Especificidade da Espécie
6.
Biochemistry ; 43(1): 148-54, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14705940

RESUMO

Antifreeze proteins (AFPs) inhibit the growth of ice by binding to the surface of ice crystals, preventing the addition of water molecules to cause a local depression of the freezing point. AFPs from insects are much more effective at depressing the freezing point than fish AFPs. Here, we have investigated the possibility that insect AFPs bind more avidly to ice than fish AFPs. Because it is not possible to directly measure the affinity of an AFP for ice, we have assessed binding indirectly by examining the partitioning of proteins into a slowly growing ice hemisphere. AFP molecules adsorbed to the surface and became incorporated into the ice as they were overgrown. Solutes, including non-AFPs, were very efficiently excluded from ice, whereas AFPs became incorporated into ice at a concentration roughly equal to that of the original solution, and this was independent of the AFP concentration in the range (submillimolar) tested. Despite their >10-fold difference in antifreeze activity, fish and insect AFPs partitioned into ice to a similar degree, suggesting that insect AFPs do not bind to ice with appreciably higher affinity. Additionally, we have demonstrated that steric mutations on the ice binding surface that decrease the antifreeze activity of an AFP also reduce its inclusion into ice, supporting the validity of using partitioning measurements to assess a protein's affinity for ice.


Assuntos
Proteínas Anticongelantes Tipo II/química , Proteínas Anticongelantes Tipo II/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Congelamento , Animais , Proteínas Anticongelantes/genética , Proteínas Anticongelantes Tipo II/genética , Peixes , Mariposas , Mutagênese Sítio-Dirigida , Mioglobina/química , Perciformes , Ligação Proteica/genética , Soluções , Tenebrio , Fatores de Tempo , alfa-Fetoproteínas/química
7.
Biochem Biophys Res Commun ; 300(3): 645-8, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12507497

RESUMO

Antifreeze proteins (AFPs) can protect organisms from freezing injury by adsorbing to ice and inhibiting its growth. We describe here a method where ice, grown on a cold finger, is used to selectively adsorb and purify these ice-binding proteins from a crude mixture. Type III recombinant AFP was enriched approximately 50-fold after one round of partitioning into ice and purified to homogeneity by a second round. This method can also be used to purify non-ice-binding proteins by linkage to AFP domains as demonstrated by the recovery of a 50 kDa maltose-binding protein-AFP fusion from a crude lysate of Escherichia coli.


Assuntos
Proteínas Anticongelantes Tipo III/química , Proteínas Anticongelantes Tipo III/isolamento & purificação , Gelo , Adsorção , Animais , Eletroforese em Gel de Poliacrilamida , Congelamento , Gelo/análise , Refrigeração/instrumentação , Refrigeração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...