Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828992

RESUMO

Epoxide hydrolase StEH1, from potato, is similar in overall structural fold and catalytic mechanism to haloalkane dehalogenase DhlA from Xanthobacter autotrophicus. StEH1 displays low (promiscuous) hydrolytic activity with (2-chloro)- and (2-bromo)ethanebenzene producing 2-phenylethanol. To investigate possibilities to amplify these very low dehalogenase activities, StEH1 was subjected to targeted randomized mutagenesis at five active-site amino acid residues and the resulting protein library was challenged for reactivity towards a bait chloride substrate. Enzymes catalyzing the first half-reaction of a hydrolytic cycle were isolated following monovalent phage display of the mutated proteins. Several StEH1 derived enzymes were identified with enhanced dehalogenase activities.

2.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691604

RESUMO

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Assuntos
Cromossomos Humanos Par 10 , Cromossomos Humanos Par 4 , Genótipo , Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral , Fenótipo , Telômero , Humanos , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 4/genética , Sistemas CRISPR-Cas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Telômero/genética , Telômero/metabolismo , Translocação Genética
4.
Biochim Biophys Acta Proteins Proteom ; 1870(11-12): 140852, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055518

RESUMO

PDZ domains are highly abundant protein-protein interaction modules in human. One of the most extensively characterized PDZ domain, the third PDZ domain from PSD-95 (PDZ3), contains an α-helical C-terminal extension that has a key role in the function of the domain. Here we compared the folding of PDZ3 with a truncated variant (PDZ3Δα3), lacking the additional helix, by means of the so-called Φ-value analysis, an experimental technique that allows inferring the structure of folding transition states. Experiments reveal subtle but detectable differences in the folding of PDZ3Δα3 versus PDZ3, as probed by structural characterization of the folding transition states. These differences appear more remarkable in the early stages of folding, with a detectable shift of the folding nucleus. The presented results allow demonstrating that the native state exerts a weak bias at the early stages of folding, which appear to be characterized by alternative pathways.


Assuntos
Domínios PDZ , Dobramento de Proteína , Humanos , Conformação Proteica em alfa-Hélice
5.
Nat Commun ; 13(1): 3507, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717442

RESUMO

Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses.


Assuntos
Proteínas de Transporte , Proteômica , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/genética , Sinapses/metabolismo
6.
Methods Mol Biol ; 2256: 149-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014521

RESUMO

Understanding the mechanism of folding of single domain proteins demands a complete characterization of their equilibrium and kinetic properties. By using a well-studied class of protein domain, the PDZ domain, here we exemplify the typical procedure to address this problem.


Assuntos
Domínios PDZ , Dobramento de Proteína , Proteínas/química , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Proteínas/genética , Termodinâmica
7.
J Mol Biol ; 432(22): 5920-5937, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32971111

RESUMO

Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios PDZ/fisiologia , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanilato Quinases/metabolismo , Humanos , Miosinas/metabolismo , Proteínas , Estereocílios/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(33): 19963-19969, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747559

RESUMO

Although more than 75% of the proteome is composed of multidomain proteins, current knowledge of protein folding is based primarily on studies of isolated domains. In this work, we describe the folding mechanism of a multidomain tandem construct comprising two distinct covalently bound PDZ domains belonging to a protein called Whirlin, a scaffolding protein of the hearing apparatus. In particular, via a synergy between NMR and kinetic experiments, we demonstrate the presence of a misfolded intermediate that competes with productive folding. In agreement with the view that tandem domain swapping is a potential source of transient misfolding, we demonstrate that such a kinetic trap retains native-like functional activity, as shown by the preserved ability to bind its physiological ligand. Thus, despite the general knowledge that protein misfolding is intimately associated with dysfunction and diseases, we provide a direct example of a functionally competent misfolded state. Remarkably, a bioinformatics analysis of the amino acidic sequence of Whirlin from different species suggests that the tendency to perform tandem domain swapping between PDZ1 and PDZ2 is highly conserved, as demonstrated by their unexpectedly high sequence identity. On the basis of these observations, we discuss on a possible physiological role of such misfolded intermediate.


Assuntos
Proteínas/química , Cinética , Domínios PDZ , Dobramento de Proteína , Proteínas/metabolismo
9.
ACS Med Chem Lett ; 10(4): 499-503, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996786

RESUMO

Targeted approaches aiming at modulating NHERF1 activity, rather than its overall expression, would be preferred to preserve the normal functions of this versatile protein. We focused our attention on the NHERF1/PDZ1 domain that governs its membrane recruitment/displacement through a transient phosphorylation switch. We herein report the design and synthesis of novel NHERF1 PDZ1 domain inhibitors. These compounds have potential therapeutic value when used in combination with antagonists of ß-catenin to augment apoptotic death of colorectal cancer cells refractory to currently available Wnt/ß-catenin-targeted agents.

10.
Biochemistry ; 57(40): 5877-5885, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204427

RESUMO

d-Fructose 6-phosphate aldolase (FSA) catalyzes the asymmetric cross-aldol addition of phenylacetaldehyde and hydroxyacetone. We conducted structure-guided saturation mutagenesis of noncatalytic active-site residues to produce new FSA variants, with the goal of widening the substrate scope of the wild-type enzyme toward a range of para- and meta-substituted arylated aldehydes. After a single generation of mutagenesis and selection, enzymes with diverse substrate selectivity scopes were identified. The kinetic parameters and stereoselectivities for a subset of enzyme/substrate combinations were determined for the reactions in both the aldol addition and cleavage reaction directions. The achieved collection of new aldolase enzymes provides new tools for controlled asymmetric synthesis of substituted aldols.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Frutose-Bifosfato Aldolase/química , Frutosefosfatos/química , Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Especificidade por Substrato
11.
Oncogene ; 37(24): 3301-3316, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29551770

RESUMO

Nuclear activated ß-catenin plays a causative role in colorectal cancers (CRC) but remains an elusive therapeutic target. Using human CRC cells harboring different Wnt/ß-catenin pathway mutations in APC/KRAS or ß-catenin/KRAS genes, and both genetic and pharmacological knockdown approaches, we show that oncogenic ß-catenin signaling negatively regulates the expression of NHERF1 (Na+/H+ exchanger 3 regulating factor 1), a PDZ-adaptor protein that is usually lost or downregulated in early dysplastic adenomas to exacerbate nuclear ß-catenin activity. Chromatin immunoprecipitation (ChIP) assays demonstrated that ß-catenin represses NHERF1 via TCF4 directly, while the association between TCF1 and the Nherf1 promoter increased upon ß-catenin knockdown. To note, the occurrence of a cytostatic survival response in settings of single ß-catenin-depleted CRC cells was abrogated by combining NHERF1 inhibition via small hairpin RNA (shRNA) or RS5517, a novel PDZ1-domain ligand of NHERF1 that prevented its ectopic nuclear entry. Mechanistically, dual NHERF1/ß-catenin targeting promoted an autophagy-to-apoptosis switch consistent with the activation of Caspase-3, the cleavage of PARP and reduced levels of phospho-ERK1/2, Beclin-1, and Rab7 autophagic proteins compared with ß-catenin knockdown alone. Collectively, our data unveil novel ß-catenin/TCF-dependent mechanisms of CRC carcinogenesis, also offering preclinical proof of concept for combining ß-catenin and NHERF1 pharmacological inhibitors as a mechanism-based strategy to augment apoptotic death of CRC cells refractory to current Wnt/ß-catenin-targeted therapeutics.


Assuntos
Neoplasias Colorretais/genética , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , beta Catenina/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mutação , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/química , Fosfoproteínas/genética , Transporte Proteico/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Sulfonamidas/farmacologia , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , beta Catenina/antagonistas & inibidores
12.
Protein Eng Des Sel ; 31(10): 367-373, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690500

RESUMO

Ever since Ranganathan and coworkers subjected the covariation of amino acid residues in the postsynaptic density-95/Discs large/Zonula occludens 1 (PDZ) domain family to a statistical correlation analysis, PDZ domains have represented a paradigmatic family to explore single domain protein allostery. Nevertheless, several theoretical and experimental studies in the past two decades have contributed contradicting results with regard to structural localization of the allosteric networks, or even questioned their actual existence in PDZ domains. In this review, we first describe theoretical and experimental approaches that were used to probe the energetic network(s) in PDZ domains. We then compare the proposed networks for two well-studied PDZ domains namely the third PDZ domain from PSD-95 and the second PDZ domain from PTP-BL. Our analysis highlights the contradiction between the different methods and calls for additional work to better understand these allosteric phenomena.


Assuntos
Domínios PDZ , Regulação Alostérica , Sequência de Aminoácidos , Animais , Humanos , Simulação de Dinâmica Molecular , Mutação , Domínios PDZ/genética , Termodinâmica
13.
Sci Rep ; 7(1): 12593, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974728

RESUMO

PDZ domains are one of the most important protein-protein interaction domains in human. While presenting a conserved three dimensional structure, a substantial number of PDZ domains display structural extensions suggested to be involved in their folding and binding mechanisms. The C-terminal α-helix extension (α3) of the third PDZ domain from PSD-95 (PDZ3) has been reported to have a role in function of the domain as well as in the stabilization of the native fold. Here we report an evaluation of the effect of the truncation of this additional helix on the folding and unfolding kinetics of PDZ3. Fluorescent variants of full length and truncated PDZ3 were produced and stopped-flow fluorescence measurements were made under different experimental conditions (pH, ionic strength and temperature) to investigate the folding kinetics of the respective variant. The results show that folding of PDZ3 is robust and that the mechanism is only marginally affected by the truncation, which contributes to a destabilization of the native state, but otherwise do not change the overall observed kinetics. Furthermore, the increase in the unfolding rate constants, but not the folding rate constant upon deletion of α3 suggests that the α-helical extension is largely unstructured in the folding transition state.


Assuntos
Proteína 4 Homóloga a Disks-Large/química , Domínios PDZ/genética , Conformação Proteica em alfa-Hélice/genética , Estabilidade Proteica , Proteína 4 Homóloga a Disks-Large/genética , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Dobramento de Proteína , Desdobramento de Proteína , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...