Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570103

RESUMO

Since ZnO nanoparticles (NPs) possess a variety of intrinsic defects, they can provide a wide spectrum of visible emission, without adding any impurity or any doping atoms. They are attracting more and more interest as a material for light sources and energy downshifting systems. However, defect emission with a high luminescence quantum efficiency (PL QY) is difficult to obtain. Here, we present the co-precipitation synthesis parameters permitting to attain ZnO NPs with highly visible PL QYs. We found that the nature of zinc precursors and alkaline hydroxide (KOH or LiOH) used in this method affects the emission spectra and the PL QY of the as-grown ZnO NPs. LiOH is found to have an advantageous effect on the visible emission efficiency when added during the synthesis of the ZnO NPs. More precisely, LiOH permits to increase the emission efficiency in the visible up to 13%. We discuss the effects of the nanoparticle size, the morphology and the surface stabilization on the enhancement of the luminescent emission efficiency. Various spectral contributions to the luminescent emission were also examined, in order to achieve a control of the defect emission to increase its efficiency.

2.
Nat Commun ; 14(1): 1835, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005409

RESUMO

With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Elementos de DNA Transponíveis/genética , Glycine max/genética , Glycine max/microbiologia , Ecossistema , Basidiomycota/genética , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...