Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol X ; 7: 100079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578472

RESUMO

Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.

3.
Nat Commun ; 13(1): 1927, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395851

RESUMO

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.


Assuntos
Aminopeptidases , Simulação de Dinâmica Molecular , Aminopeptidases/metabolismo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Peptídeos
4.
Chem Sci ; 12(18): 6223-6237, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-34084422

RESUMO

High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.

5.
Sci Adv ; 5(9): eaaw3818, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31517045

RESUMO

Coordinated conformational transitions in oligomeric enzymatic complexes modulate function in response to substrates and play a crucial role in enzyme inhibition and activation. Caseinolytic protease (ClpP) is a tetradecameric complex, which has emerged as a drug target against multiple pathogenic bacteria. Activation of different ClpPs by inhibitors has been independently reported from drug development efforts, but no rationale for inhibitor-induced activation has been hitherto proposed. Using an integrated approach that includes x-ray crystallography, solid- and solution-state nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the proteasome inhibitor bortezomib binds to the ClpP active-site serine, mimicking a peptide substrate, and induces a concerted allosteric activation of the complex. The bortezomib-activated conformation also exhibits a higher affinity for its cognate unfoldase ClpX. We propose a universal allosteric mechanism, where substrate binding to a single subunit locks ClpP into an active conformation optimized for chaperone association and protein processive degradation.


Assuntos
Proteínas de Bactérias , Endopeptidase Clp , Inibidores de Proteases/química , Thermus thermophilus/enzimologia , Regulação Alostérica , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Endopeptidase Clp/antagonistas & inibidores , Endopeptidase Clp/química
6.
J Am Chem Soc ; 141(28): 11183-11195, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31199882

RESUMO

Aromatic residues are located at structurally important sites of many proteins. Probing their interactions and dynamics can provide important functional insight but is challenging in large proteins. Here, we introduce approaches to characterize the dynamics of phenylalanine residues using 1H-detected fast magic-angle spinning (MAS) NMR combined with a tailored isotope-labeling scheme. Our approach yields isolated two-spin systems that are ideally suited for artifact-free dynamics measurements, and allows probing motions effectively without molecular weight limitations. The application to the TET2 enzyme assembly of ∼0.5 MDa size, the currently largest protein assigned by MAS NMR, provides insights into motions occurring on a wide range of time scales (picoseconds to milliseconds). We quantitatively probe ring-flip motions and show the temperature dependence by MAS NMR measurements down to 100 K. Interestingly, favorable line widths are observed down to 100 K, with potential implications for DNP NMR. Furthermore, we report the first 13C R1ρ MAS NMR relaxation-dispersion measurements and detect structural excursions occurring on a microsecond time scale in the entry pore to the catalytic chamber and at a trimer interface that was proposed as the exit pore. We show that the labeling scheme with deuteration at ca. 50 kHz MAS provides superior resolution compared to 100 kHz MAS experiments with protonated, uniformly 13C-labeled samples.


Assuntos
Aminopeptidases/química , Ressonância Magnética Nuclear Biomolecular , Termodinâmica , Aminopeptidases/metabolismo , Isótopos de Carbono , Conformação Proteica , Prótons , Pyrococcus horikoshii/enzimologia
7.
Nat Commun ; 10(1): 2697, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217444

RESUMO

Atomic-resolution structure determination is crucial for understanding protein function. Cryo-EM and NMR spectroscopy both provide structural information, but currently cryo-EM does not routinely give access to atomic-level structural data, and, generally, NMR structure determination is restricted to small (<30 kDa) proteins. We introduce an integrated structure determination approach that simultaneously uses NMR and EM data to overcome the limits of each of these methods. The approach enables structure determination of the 468 kDa large dodecameric aminopeptidase TET2 to a precision and accuracy below 1 Å by combining secondary-structure information obtained from near-complete magic-angle-spinning NMR assignments of the 39 kDa-large subunits, distance restraints from backbone amides and ILV methyl groups, and a 4.1 Å resolution EM map. The resulting structure exceeds current standards of NMR and EM structure determination in terms of molecular weight and precision. Importantly, the approach is successful even in cases where only medium-resolution cryo-EM data are available.


Assuntos
Complexos Multienzimáticos/ultraestrutura , Estrutura Quaternária de Proteína , Aminopeptidases/química , Aminopeptidases/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Peso Molecular , Complexos Multienzimáticos/química , Pyrococcus horikoshii
8.
J Am Chem Soc ; 141(2): 858-869, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30620186

RESUMO

NMR relaxation dispersion methods provide a holistic way to observe microsecond time-scale protein backbone motion both in solution and in the solid state. Different nuclei (1H and 15N) and different relaxation dispersion techniques (Bloch-McConnell and near-rotary-resonance) give complementary information about the amplitudes and time scales of the conformational dynamics and provide comprehensive insights into the mechanistic details of the structural rearrangements. In this paper, we exemplify the benefits of the combination of various solution- and solid-state relaxation dispersion methods on a microcrystalline protein (α-spectrin SH3 domain), for which we are able to identify and model the functionally relevant conformational rearrangements around the ligand recognition loop occurring on multiple microsecond time scales. The observed loop motions suggest that the SH3 domain exists in a binding-competent conformation in dynamic equilibrium with a sterically impaired ground-state conformation both in solution and in crystalline form. This inherent plasticity between the interconverting macrostates is compatible with a conformational-preselection model and provides new insights into the recognition mechanisms of SH3 domains.


Assuntos
Espectrina/química , Sequência de Aminoácidos , Animais , Galinhas , Hidrogênio , Movimento (Física) , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Fatores de Tempo , Domínios de Homologia de src
9.
Chemphyschem ; 20(2): 276-284, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30444575

RESUMO

Studying protein dynamics on microsecond-to-millisecond (µs-ms) time scales can provide important insight into protein function. In magic-angle-spinning (MAS) NMR, µs dynamics can be visualized by R 1 ρ rotating-frame relaxation dispersion experiments in different regimes of radio-frequency field strengths: at low RF field strength, isotropic-chemical-shift fluctuation leads to "Bloch-McConnell-type" relaxation dispersion, while when the RF field approaches rotary resonance conditions bond angle fluctuations manifest as increased R 1 ρ rate constants ("Near-Rotary-Resonance Relaxation Dispersion", NERRD). Here we explore the joint analysis of both regimes to gain comprehensive insight into motion in terms of geometric amplitudes, chemical-shift changes, populations and exchange kinetics. We use a numerical simulation procedure to illustrate these effects and the potential of extracting exchange parameters, and apply the methodology to the study of a previously described conformational exchange process in microcrystalline ubiquitin.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Conformação Proteica , Ubiquitina/química
10.
J Biomol NMR ; 71(1): 53-67, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29845494

RESUMO

Solid-state near-rotary-resonance measurements of the spin-lattice relaxation rate in the rotating frame (R1ρ) is a powerful NMR technique for studying molecular dynamics in the microsecond time scale. The small difference between the spin-lock (SL) and magic-angle-spinning (MAS) frequencies allows sampling very slow motions, at the same time it brings up some methodological challenges. In this work, several issues affecting correct measurements and analysis of 15N R1ρ data are considered in detail. Among them are signal amplitude as a function of the difference between SL and MAS frequencies, "dead time" in the initial part of the relaxation decay caused by transient spin-dynamic oscillations, measurements under HORROR condition and proper treatment of the multi-exponential relaxation decays. The multiple 15N R1ρ measurements at different SL fields and temperatures have been conducted in 1D mode (i.e. without site-specific resolution) for a set of four different microcrystalline protein samples (GB1, SH3, MPD-ubiquitin and cubic-PEG-ubiquitin) to study the overall protein rocking in a crystal. While the amplitude of this motion varies very significantly, its correlation time for all four sample is practically the same, 30-50 µs. The amplitude of the rocking motion correlates with the packing density of a protein crystal. It has been suggested that the rocking motion is not diffusive but likely a jump-like dynamic process.


Assuntos
Simulação de Dinâmica Molecular , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Cristalização , Movimento (Física) , Receptores de GABA-B/química , Fatores de Tempo , Ubiquitina/química , Domínios de Homologia de src
11.
Phys Chem Chem Phys ; 20(16): 11237-11246, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632904

RESUMO

DCL1 is the ribonuclease that carries out miRNA biogenesis in plants. Substrate pri-miRNA recognition by DCL1 requires two double stranded RNA binding domains located at the C-terminus of the protein. We have previously shown that the first of these domains, DCL1-A, is intrinsically disordered and folds upon binding pri-miRNA. Integrating NMR and SAXS data, we study here the conformational landscape of free DCL1-A through an ensemble description. Our results reveal that secondary structure elements, corresponding to the folded form of the protein, are transiently populated in the unbound state. The conformation of one of the dsRNA binding regions in the free protein shows that, at a local level, RNA recognition proceeds through a conformational selection mechanism. We further explored the stability of the preformed structural elements via temperature and urea destabilization. The C-terminal helix is halfway on the folding pathway in free DCL1-A, constituting a potential nucleation site for the final folding of the protein. In contrast, the N-terminal helix adopts stable non-native structures that could hinder the correct folding of the protein in the absence of RNA. This description of the unfolded form allows us to understand details of the mechanism of binding-induced folding of the protein.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , MicroRNAs/química , Modelos Químicos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Ribonuclease III/química , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
12.
Phys Chem Chem Phys ; 20(14): 9376-9388, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29565070

RESUMO

The intrinsically disordered protein domain DCL1-A is the first report of a complete double stranded RNA binding domain folding upon binding. DCL1-A recognizes the dsRNA by acquiring a well-folded structure after engagement with its interaction partner. Despite the structural characterization of the interaction complex underlying the recognition of dsRNA has been established, the dynamics of disorder-to-order transitions in the binding process remains elusive. Here we have developed a coarse-grained structure-based model with consideration of electrostatic interactions to explore the mechanism of the coupled folding and binding. Our approach led to remarkable agreements with both experimental and theoretical results. We quantified the global binding-folding landscape, which indicates a synergistic binding induced folding mechanism. We further investigated the effect of electrostatic interactions in this coupled folding and binding process. It reveals that non-native electrostatic interactions dominate the initial stage of the recognition. Our results help improve our understanding of the induced folding of the IDP DCL1-A upon binding to dsRNA. Such methods developed here can be applied for further explorations of the dynamics of coupled folding and binding systems.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ciclo Celular/química , Dobramento de Proteína , RNA/química , Ribonuclease III/química , Simulação por Computador , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
13.
Chemphyschem ; 18(19): 2697-2703, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792111

RESUMO

Solid-state NMR spectroscopy can provide insight into protein structure and dynamics at the atomic level without inherent protein size limitations. However, a major hurdle to studying large proteins by solid-state NMR spectroscopy is related to spectral complexity and resonance overlap, which increase with molecular weight and severely hamper the assignment process. Here the use of two sets of experiments is shown to expand the tool kit of 1 H-detected assignment approaches, which correlate a given amide pair either to the two adjacent CO-CA pairs (4D hCOCANH/hCOCAcoNH), or to the amide 1 H of the neighboring residue (3D HcocaNH/HcacoNH, which can be extended to 5D). The experiments are based on efficient coherence transfers between backbone atoms using INEPT transfers between carbons and cross-polarization for heteronuclear transfers. The utility of these experiments is exemplified with application to assemblies of deuterated, fully amide-protonated proteins from approximately 20 to 60 kDa monomer, at magic-angle spinning (MAS) frequencies from approximately 40 to 55 kHz. These experiments will also be applicable to protonated proteins at higher MAS frequencies. The resonance assignment of a domain within the 50.4 kDa bacteriophage T5 tube protein pb6 is reported, and this is compared to NMR assignments of the isolated domain in solution. This comparison reveals contacts of this domain to the core of the polymeric tail tube assembly.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Amidas/química
14.
Solid State Nucl Magn Reson ; 87: 86-95, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28438365

RESUMO

Solid-state NMR spectroscopy can provide site-resolved information about protein dynamics over many time scales. Here we combine protein deuteration, fast magic-angle spinning (~45-60kHz) and proton detection to study dynamics of ubiquitin in microcrystals, and in particular a mutant in a region that undergoes microsecond motions in a ß-turn region in the wild-type protein. We use 15N R1ρ relaxation measurements as a function of the radio-frequency (RF) field strength, i.e. relaxation dispersion, to probe how the G53A mutation alters these dynamics. We report a population-inversion of conformational states: the conformation that in the wild-type protein is populated only sparsely becomes the predominant state. We furthermore explore the potential to use amide-1H R1ρ relaxation to obtain insight into dynamics. We show that while quantitative interpretation of 1H relaxation remains beyond reach under the experimental conditions, due to coherent contributions to decay, one may extract qualitative information about flexibility.


Assuntos
Proteínas Mutantes/química , Mutação , Ressonância Magnética Nuclear Biomolecular , Ubiquitina/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/genética , Conformação Proteica , Ubiquitina/genética
15.
Chem Commun (Camb) ; 52(61): 9558-61, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27385633

RESUMO

Solid-state NMR spectroscopy allows the characterization of the structure, interactions and dynamics of insoluble and/or very large proteins. Sensitivity and resolution are often major challenges for obtaining atomic-resolution information, in particular for very large protein complexes. Here we show that the use of deuterated, specifically CH3-labelled proteins result in significant sensitivity gains compared to previously employed CHD2 labelling, while line widths increase only marginally. We apply this labelling strategy to a 468 kDa-large dodecameric aminopeptidase, TET2, and the 1.6 MDa-large 50S ribosome subunit of Thermus thermophilus.

16.
Arch Biochem Biophys ; 596: 118-25, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987516

RESUMO

Double stranded RNA (dsRNA) participates in several biological processes, where RNA molecules acquire secondary structure inside the cell through base complementarity. The double stranded RNA binding domain (dsRBD) is one of the main protein folds that is able to recognize and bind to dsRNA regions. The N-terminal dsRBD of DCL1 in Arabidopsis thaliana (DCL1-1), in contrast to other studied dsRBDs, lacks a stable structure, behaving as an intrinsically disordered protein. DCL1-1 does however recognize dsRNA by acquiring a canonical fold in the presence of its substrate. Here we present a detailed modeling and molecular dynamics study of dsRNA recognition by DCL1-1. We found that DCL1-1 forms stable complexes with different RNAs and we characterized the residues involved in binding. Although the domain shows a binding loop substantially shorter than other homologs, it can still interact with the dsRNA and results in bending of the dsRNA A-type helix. Furthermore, we found that R8, a non-conserved residue located in the first dsRNA binding region, recognizes preferentially mismatched base pairs. We discuss our findings in the context of the function of DCL1-1 within the microRNA processing complex.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Ciclo Celular/química , MicroRNAs/química , Modelos Químicos , Simulação de Dinâmica Molecular , RNA de Cadeia Dupla/química , RNA de Plantas/química , Ribonuclease III/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , MicroRNAs/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/metabolismo , Ribonuclease III/metabolismo
17.
Bioinformatics ; 31(22): 3697-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26198103

RESUMO

MOTIVATION: Water molecules are key players for protein folding and function. On the protein surface, water is not placed randomly, but display instead a particular structure evidenced by the presence of specific water sites (WS). These WS can be derived and characterized using explicit water Molecular Dynamics simulations, providing useful information for ligand binding prediction and design. Here we present WATCLUST, a WS determination and analysis tool running on the VMD platform. The tool also allows direct transfer of the WS information to Autodock program to perform biased docking. AVAILABILITY AND IMPLEMENTATION: The WATCLUST plugin and documentation are freely available at http://sbg.qb.fcen.uba.ar/watclust/. CONTACT: marcelo@qi.fcen.uba.ar, adrian@qi.fcen.uba.ar.


Assuntos
Desenho de Fármacos , Proteínas/química , Software , Água/química , Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular
18.
PLoS Comput Biol ; 11(3): e1004051, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25741692

RESUMO

Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.


Assuntos
Amidas/química , Cisteína/química , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfênicos/química , Amidas/metabolismo , Biologia Computacional , Cisteína/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Ácidos Sulfênicos/metabolismo
19.
J Phys Chem B ; 118(5): 1234-45, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24410478

RESUMO

Internal water molecules play an active role in ligand uptake regulation, since displacement of retained water molecules from protein surfaces or cavities by incoming ligands can promote favorable or disfavorable effects over the global binding process. Detection of these water molecules by X-ray crystallography is difficult given their positional disorder and low occupancy. In this work, we employ a combination of molecular dynamics simulations and ligand rebinding over a broad time range to shed light into the role of water molecules in ligand migration and binding. Computational studies on the unliganded structure of the thermostable truncated hemoglobin from Thermobifida fusca (Tf-trHbO) show that a water molecule is in the vicinity of the iron heme, stabilized by WG8 with the assistance of YCD1, exerting a steric hindrance for binding of an exogenous ligand. Mutation of WG8 to F results in a significantly lower stabilization of this water molecule and in subtle dynamical structural changes that favor ligand binding, as observed experimentally. Water is absent from the fully hydrophobic distal cavity of the triple mutant YB10F-YCD1F-WG8F (3F), due to the lack of residues capable of stabilizing it nearby the heme. In agreement with these effects on the barriers for ligand rebinding, over 97% of the photodissociated ligands are rebound within a few nanoseconds in the 3F mutant case. Our results demonstrate the specific involvement of water molecules in shaping the energetic barriers for ligand migration and binding.


Assuntos
Hemoglobinas/química , Ligantes , Água/química , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Hemoglobinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo
20.
Glycobiology ; 23(2): 241-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23089616

RESUMO

Recognition and complex formation between proteins and carbohydrates is a key issue in many important biological processes. Determination of the three-dimensional structure of such complexes is thus most relevant, but particularly challenging because of their usually low binding affinity. In silico docking methods have a long-standing tradition in predicting protein-ligand complexes, and allow a potentially fast exploration of a number of possible protein-carbohydrate complex structures. However, determining which of these predicted complexes represents the correct structure is not always straightforward. In this work, we present a modification of the scoring function provided by AutoDock4, a widely used docking software, on the basis of analysis of the solvent structure adjacent to the protein surface, as derived from molecular dynamics simulations, that allows the definition and characterization of regions with higher water occupancy than the bulk solvent, called water sites. They mimic the interaction held between the carbohydrate -OH groups and the protein. We used this information for an improved docking method in relation to its capacity to correctly predict the protein-carbohydrate complexes for a number of tested proteins, whose ligands range in size from mono- to tetrasaccharide. Our results show that the presented method significantly improves the docking predictions. The resulting solvent-structure-biased docking protocol, therefore, appears as a powerful tool for the design and optimization of development of glycomimetic drugs, while providing new insights into protein-carbohydrate interactions. Moreover, the achieved improvement also underscores the relevance of the solvent structure to the protein carbohydrate recognition process.


Assuntos
Carboidratos/química , Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Sítios de Ligação , Galectinas/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Software , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...