Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 331(Pt 2): 121826, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196840

RESUMO

The Metropolitan Area of São Paulo (MASP) is among the largest urban areas in the Southern Hemisphere. Vehicular emissions are of great concern in metropolitan areas and MASP is unique due to the use of biofuels on a large scale (sugarcane ethanol and biodiesel). In this work, tunnel measurements were employed to assess vehicle emissions and to calculate emission factors (EFs) for heavy-duty and light-duty vehicles (HDVs and LDVs). The EFs were determined for particulate matter (PM) and its chemical compounds. The EFs obtained for 2018 were compared with previous tunnel experiments performed in the same area. An overall trend of reduction of fine and coarse PM, organic carbon (OC), and elemental carbon (EC) EFs for both LDVs and HDVs was observed if compared to those observed in past years, suggesting the effectiveness of vehicular emissions control policies implemented in Brazil. A predominance of Fe, Cu, Al, and Ba emissions was observed for the LDV fleet in the fine fraction. Cu presented higher emissions than two decades ago, which was associated with the increased use of ethanol fuel in the region. For HDVs, Zn and Pb were mostly emitted in the fine mode and were linked with lubricating oil emissions from diesel vehicles. A predominance in the emission of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) for HDVs and five-ring PAHs for LDVs agreed with what was observed in previous studies. The use of biofuels may explain the lower PAH emissions for LDVs (including carcinogenic benzo[a]pyrene) compared to those observed in other countries. The tendency observed was that LDVs emitted higher amounts of carcinogenic species. The use of these real EFs in air quality modeling resulted in more accurate simulations of PM concentrations, showing the importance of updating data with real-world measurements.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Biocombustíveis , Serina Proteases Associadas a Proteína de Ligação a Manose , Monitoramento Ambiental/métodos , Brasil , Material Particulado/análise , Carbono/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Etanol
2.
Geosci Model Dev ; 14(6): 3251-3268, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813117

RESUMO

We evaluate the performance of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) in simulating ozone (O3) and nitrogen oxides (NOx) concentrations within the urban street canyons in the São Paulo metropolitan area (SPMA). The MUNICH simulations are performed inside the Pinheiros neighborhood (a residential area) and Paulista Avenue (an economic hub), which are representative urban canyons in the SPMA. Both zones have air quality stations maintained by the São Paulo Environmental Agency (CETESB), providing data (both pollutant concentrations and meteorological) for model evaluation. Meteorological inputs for MUNICH are produced by a simulation with the Weather Research and Forecasting model (WRF) over triple-nested domains with the innermost domain centered over the SPMA at a spatial grid resolution of 1 km. Street coordinates and emission flux rates are retrieved from the Vehicular Emission Inventory (VEIN) emission model, representing the real fleet of the region. The VEIN model has an advantage to spatially represent emissions and present compatibility with MUNICH. Building height is estimated from the World Urban Database and Access Portal Tools (WUDAPT) local climate zone map for SPMA. Background concentrations are obtained from the Ibirapuera air quality station located in an urban park. Finally, volatile organic compound (VOC) speciation is approximated using information from the São Paulo air quality forecast emission file and non-methane hydrocarbon concentration measurements. Results show an overprediction of O3 concentrations in both study cases. NOx concentrations are underpredicted in Pinheiros but are better simulated in Paulista Avenue. Compared to O3, NO2 is better simulated in both urban zones. The O3 prediction is highly dependent on the background concentration, which is the main cause for the model O3 overprediction. The MUNICH simulations satisfy the performance criteria when emissions are calibrated. The results show the great potential of MUNICH to represent the concentrations of pollutants emitted by the fleet close to the streets. The street-scale air pollutant predictions make it possible in the future to evaluate the impacts on public health due to human exposure to primary exhaust gas pollutants emitted by the vehicles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...