Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 8(3)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041468

RESUMO

Chemical risk assessment remains entrenched in chronic toxicity tests that set safety thresholds based on animal pathology or fitness. Chronic tests are resource expensive and lack mechanistic insight. Discovering a chemical's mode-of-action can in principle provide predictive molecular biomarkers for a toxicity endpoint. Furthermore, since molecular perturbations precede pathology, early-response molecular biomarkers may enable shorter, more resource efficient testing that can predict chronic animal fitness. This study applied untargeted metabolomics to attempt to discover early-response metabolic biomarkers that can predict reproductive fitness of Daphnia magna, an internationally-recognized test species. First, we measured the reproductive toxicities of cadmium, 2,4-dinitrophenol and propranolol to individual Daphnia in 21-day OECD toxicity tests, then measured the metabolic profiles of these animals using mass spectrometry. Multivariate regression successfully discovered putative metabolic biomarkers that strongly predict reproductive impairment by each chemical, and for all chemicals combined. The non-chemical-specific metabolic biomarkers were then applied to metabolite data from Daphnia 24-h acute toxicity tests and correctly predicted that significant decreases in reproductive fitness would occur if these animals were exposed to cadmium, 2,4-dinitrophenol or propranolol for 21 days. While the applicability of these findings is limited to three chemicals, they provide proof-of-principle that early-response metabolic biomarkers of chronic animal fitness can be discovered for regulatory toxicity testing.

2.
Sci Rep ; 6: 25125, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113113

RESUMO

Under favorable conditions, the micro-crustacean Daphnia pulex produces female offspring by parthenogenesis, whereas under unfavorable conditions, they produce male offspring to induce sexual reproduction (environmental sex determination: ESD). We recently established a suitable system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be regulated by alterations in day-length; long-day and short-day conditions can induce female and male offspring, respectively. Taking advantage of this system, we have already demonstrated that methyl farnesoate (MF) synthesis is necessary for male offspring production, and identified ionotropic glutamate receptors as an upstream regulator of MF signaling. Despite these findings, the molecular mechanisms associated with MF signaling have not yet been well elucidated. In this study, we analyzed the whole metabolic profiles of mother daphnids reared under long-day (female-producing) and short-day (male-producing) conditions, and discovered that pantothenate (vitamin B5), a known precursor to coenzyme A, was significantly accumulated in response to the short-day condition. To confirm the innate role of pantothenate in D. pulex, this metabolite was administered to mother daphnids resulting in a significantly increased proportion of male offspring producing mothers. This study provides novel insights of the metabolic mechanisms of the ESD system in D. pulex.


Assuntos
Daphnia/fisiologia , Ácido Pantotênico/metabolismo , Diferenciação Sexual , Animais , Exposição Ambiental , Ácidos Graxos Insaturados/metabolismo , Masculino , Metabolômica , Transdução de Sinais
3.
Toxicol Lett ; 223(1): 103-8, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24021169

RESUMO

Due to the widespread use of silver nanoparticles (AgNPs), the likelihood of them entering the environment has increased and they are known to be potentially toxic. Currently, there is little information on the dynamic changes of AgNPs in ecotoxicity exposure media and how this may affect toxicity. Here, the colloidal stability of three different sizes of citrate-stabilized AgNPs was assessed in standard strength OECD ISO exposure media, and in 2-fold (media2) and 10-fold (media10) dilutions by transmission electron microscopy (TEM) and atomic force microscopy (AFM) and these characteristics were related to their toxicity towards Daphnia magna. Aggregation in undiluted media (media1) was rapid, and after diluting the medium by a factor of 2 or 10, aggregation was reduced, with minimal aggregation over 24h occurring in media10. Acute toxicity measurements were performed using 7nm diameter particles in media1 and media10. In media10 the EC50 of the 7nm particles for D. magna neonates was calculated to be 7.46µgL(-1) with upper and lower 95% confidence intervals of 6.84µgL(-1) and 8.13µgL(-1) respectively. For media1, an EC50 could not be calculated, the lowest observed adverse effect concentration (LOAEC) of 11.25µgL(-1) indicating a significant reduction in toxicity compared to that in media10. The data suggest the increased dispersion of nanoparticles leads to enhanced toxicity, emphasising the importance of appropriate media composition to fully assess nanoparticle toxicity in aquatic ecotoxicity tests.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Testes de Toxicidade/métodos , Animais , Daphnia , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
4.
Xenobiotica ; 42(2): 195-205, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21955249

RESUMO

The distribution, metabolism, excretion and hepatic effects of diclofenac were investigated following a single oral dose of 10 mg/kg to wild type and hepatic reductase null (HRN) mice. For the HRN strain the bulk of the [(14)C]-diclofenac-related material was excreted in the urine/aqueous cagewash within 12 h of administration (~82%) with only small amounts eliminated via the faeces (~2% in 24 h). Wild type mice excreted the radiolabel more slowly with ca. 52 and 15% of the dose recovered excreted in urine and faeces, respectively, by 24 h post dose. The metabolic profiles of the HRN mice were dominated by acyl conjugation to either taurine or glucuronic acid. Wild type mice produced relatively small amounts of the acyl glucuronide. Whole Body Autoradiography (WBA) of mice sacrificed at 24 h post dose indicated increased retention of radioactivity in the livers of HRN mice compared to wild type mice. Covalent binding studies showed no differences between the two strains. Metabolism of diclofenac in HRN mice involved mainly acyl glucuronide formation and taurine amide conjugation. This mouse model may find utility in understanding the impact of reactive metabolite formation via routes that involve the production of acyl-CoA or acyl glucuronides of acidic drugs.


Assuntos
Diclofenaco/farmacocinética , Fígado/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Animais , Cromatografia Líquida de Alta Pressão , Diclofenaco/química , Diclofenaco/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Espectrometria de Massas , Taxa de Depuração Metabólica , Desintoxicação Metabólica Fase II , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Xenobióticos/química , Xenobióticos/farmacocinética , Xenobióticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...