Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(15): 157201, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095611

RESUMO

The microscopic origin of ultrafast modification of the ratio between the symmetric (J) and antisymmetric (D) exchange interaction in antiferromagnetic iron oxides is revealed, using femtosecond laser excitation as a pump and terahertz emission spectroscopy as a probe. By tuning the photon energy of the laser pump pulse we show that the effect of light on the D/J ratio in two archetypical iron oxides FeBO_{3} and ErFeO_{3} is maximized when the photon energy is in resonance with a spin and parity forbidden d-d transition between the crystal-field split states of Fe^{3+} ions. The experimental findings are supported by a multielectron model, which accounts for the resonant absorption of photons by Fe^{3+} ions. Our results reveal the importance of the parity and spin-change forbidden, and therefore often underestimated, d-d transitions in ultrafast optical control of magnetism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...