Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 15(10): 2026-32, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11028457

RESUMO

Studies of bone mineral ranging from cadaveric analysis to the use of high-resolution ion microprobe with secondary ion mass spectroscopy (SIMS) have concluded that bone is rich in sodium and potassium relative to calcium. Exposure of bone to acid conditions either in vitro or in vivo leads to an exchange of hydrogen ions for sodium and potassium buffering the acidity of the medium or blood, respectively. Whether these monovalent ions reside within the mineral or organic phases of bone has never been determined. To determine the contribution of organic material to bone ion composition, we dissected calvariae from 4- to 6-day-old mice, removed organic material of some with hydrazine (Hydr), and prepared all bones for analysis using a high-resolution scanning ion microprobe coupled to a secondary ion mass spectrometer. We found that in non-Hydr-treated calvariae (Ctl) there was far more surface sodium and potassium than calcium (23Na/ 40Ca = 15.7 + 1.9, ratio of counts of detected secondary ions, mean + 95% CI, 39K/40Ca = 44.0 + 1.5). Removal of organic material with hydrazine (Hydr) led to a marked fall in the ratio of sodium to calcium and potassium to calcium (23Na/40Ca = 5.9 + 1.4, p < 0.025 vs. respective Ctl and 39K/40Ca = 1.1 + 1.5, p < 0.001 vs. respective Ctl). Similarly, when examining the cross-section of the calvariae there was more sodium and potassium than calcium (23Na/40Ca = 8.6 + 1.6, 39K/40Ca = 26.7 + 1.8). Treatment with Hydr again caused a marked fall in both ratios (23Na/40Ca = 0.3 + 1.6, p < 0.001 vs. respective Ctl and 39K/40Ca = 0.02 + 1.9, p < 0.001 vs. respective Ctl). Thus, within bone the organic material contains the majority of the sodium and potassium. This suggests that the organic material in bone and not the mineral itself is responsible for the acute buffering of the additional hydrogen ions during metabolic acidosis.


Assuntos
Densidade Óssea , Osso e Ossos/química , Acidose , Animais , Animais Recém-Nascidos , Soluções Tampão , Cálcio/análise , Hidrazinas/metabolismo , Íons/análise , Camundongos , Camundongos Endogâmicos , Potássio/análise , Prótons , Sódio/análise , Espectrometria de Massa de Íon Secundário
2.
Am J Physiol ; 277(5): F813-9, 1999 11.
Artigo em Inglês | MEDLINE | ID: mdl-10564247

RESUMO

Chronic metabolic acidosis increases urine calcium excretion without altering intestinal calcium absorption, suggesting that bone mineral is the source of the additional urinary calcium. During metabolic acidosis there appears to be an influx of protons into bone mineral, lessening the magnitude of the decrement in pH. Although in vitro studies strongly support a marked effect of metabolic acidosis on the ion composition of bone, there are few in vivo observations. We utilized a high-resolution scanning ion microprobe with secondary ion mass spectroscopy to determine whether in vivo metabolic acidosis would alter bone mineral in a manner consistent with its purported role in buffering the increased proton concentration. Postweanling mice were provided distilled drinking water with or without 1.5% NH(4)Cl for 7 days; arterial blood gas was then determined. The addition of NH(4)Cl led to a fall in blood pH and HCO(-)(3) concentration. The animals were killed on day 7, and the femurs were dissected and split longitudinally. The bulk cortical ratios Na/Ca, K/Ca, total phosphate/carbon-nitrogen bonds [(PO(2) + PO(3))/CN], and HCO(-)(3)/CN each fell after 1 wk of metabolic acidosis. Because metabolic acidosis induces bone Ca loss, the fall in Na/Ca and K/Ca indicates a greater efflux of bone Na and K than Ca, suggesting H substitution for Na and K on the mineral. The fall in (PO(2) + PO(3))/CN indicates release of mineral phosphates, and the fall in HCO(-)(3)/CN indicates release of mineral HCO(-)(3). Each of these mechanisms would result in buffering of the excess protons and returning the systemic pH toward normal.


Assuntos
Acidose/metabolismo , Fêmur/metabolismo , Acidose/induzido quimicamente , Cloreto de Amônio , Animais , Ânions/metabolismo , Densidade Óssea , Cátions/metabolismo , Íons , Camundongos , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...