Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743016

RESUMO

Varicose vein disease (VVD) is a common health problem worldwide. Microfibril-associated protein 5 (MFAP5) is one of the potential key players in its pathogenesis. Our previous microarray analysis revealed the cg06256735 and cg15815843 loci in the regulatory regions of the MFAP5 gene as hypomethylated in varicose veins which correlated with its up-regulation. The aim of this work was to validate preliminary microarray data, estimate the level of 5-hydroxymethylcytosine (5hmC) at these loci, and determine the methylation status of one of them in different layers of the venous wall. For this, methyl- and hydroxymethyl-sensitive restriction techniques were used followed by real-time PCR and droplet digital PCR, correspondingly, as well as bisulfite pyrosequencing of +/- oxidized DNA. Our microarray data on hypomethylation at the cg06256735 and cg15815843 loci in whole varicose vein segments were confirmed and it was also demonstrated that the level of 5hmC at these loci is increased in VVD. Specifically, among other layers of the venous wall, tunica (t.) intima is the main contributor to hypomethylation at the cg06256735 locus in varicose veins. Thus, it was shown that hypomethylation at the cg06256735 and cg15815843 loci takes place in VVD, with evidence to suggest that it happens through their active demethylation leading to up-regulation of the MFAP5 gene, and t. intima is most involved in this biochemical process.


Assuntos
5-Metilcitosina , Metilação de DNA , Varizes , Varizes/genética , Varizes/metabolismo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Idoso , Sequências Reguladoras de Ácido Nucleico/genética , Loci Gênicos
2.
Epigenomes ; 7(1)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975604

RESUMO

Epigenomic changes in the venous cells exerted by oscillatory shear stress towards the endothelium may result in consolidation of gene expression alterations upon vein wall remodeling during varicose transformation. We aimed to reveal such epigenome-wide methylation changes. Primary culture cells were obtained from non-varicose vein segments left after surgery of 3 patients by growing the cells in selective media after magnetic immunosorting. Endothelial cells were either exposed to oscillatory shear stress or left at the static condition. Then, other cell types were treated with preconditioned media from the adjacent layer's cells. DNA isolated from the harvested cells was subjected to epigenome-wide study using Illumina microarrays followed by data analysis with GenomeStudio (Illumina), Excel (Microsoft), and Genome Enhancer (geneXplain) software packages. Differential (hypo-/hyper-) methylation was revealed for each cell layer's DNA. The most targetable master regulators controlling the activity of certain transcription factors regulating the genes near the differentially methylated sites appeared to be the following: (1) HGS, PDGFB, and AR for endothelial cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 for smooth muscle cells; and (3) WWOX, F8, IGF2R, NFKB1, RELA, SOCS1, and FXN for fibroblasts. Some of the identified master regulators may serve as promising druggable targets for treating varicose veins in the future.

4.
Vascul Pharmacol ; 145: 107021, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35690235

RESUMO

OBJECTIVE: We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS: We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS: Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION: Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.


Assuntos
DNA Mitocondrial , Varizes , DNA Mitocondrial/análise , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/patologia , Reação em Cadeia da Polimerase em Tempo Real , Veia Safena/metabolismo , Varizes/genética , Varizes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...