Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 268, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824159

RESUMO

Diabetes significantly increases the risk of heart failure by inducing myocardial cell death, potentially through ferroptosis-an iron-dependent, non-apoptotic cell death pathway characterized by lipid peroxidation. The role of cardiac ferroptosis in human heart failure, however, remains poorly understood. In this study, we compared cardiac ferroptosis in humans with diabetic heart failure to that in healthy controls. Our findings reveal that diabetes not only intensifies myocardial cell death but also upregulates markers of ferroptosis in human hearts. This is linked to decreased transcription and activity of glutathione peroxidase-4 (GPX4), influenced by reduced levels of activating transcription factor-4 (ATF4) and nuclear factor erythroid-2-related factor-2 (NRF2), and downregulation of glutathione reductase (GSR). Additionally, diabetic hearts showed an increased labile iron pool due to enhanced heme metabolism by heme oxygenase-1 (HMOX1), elevated iron import via divalent metal transporter-1 (DMT1), reduced iron storage through ferritin light chain (FLC), and decreased iron export via ferroportin-1 (FPN1). The reduction in FPN1 levels likely results from decreased stabilization by amyloid precursor protein (APP) and diminished NRF2-mediated transcription. Furthermore, diabetes upregulates lysophosphatidylcholine acyltransferase-3 (LPCAT3), facilitating the integration of polyunsaturated fatty acids (PUFA) into phospholipid membranes, and downregulates acyl-CoA thioesterase-1 (ACOT1), which further promotes ferroptosis. LC-MS/MS analysis identified several novel proteins implicated in diabetes-induced cardiac ferroptosis, including upregulated ceruloplasmin, which enhances iron metabolism, and cytochrome b-245 heavy chain (CYBB), a key component of NADPH oxidase that aids in the production of reactive oxygen species (ROS), along with downregulated voltage-dependent anion-selective channel protein-2 (VDAC2), essential for maintaining mitochondrial membrane potential. In conclusion, our study not only confirms the presence and potentially predominant role of cardiac ferroptosis in humans with diabetic heart failure but also elucidates its molecular mechanisms, offering potential therapeutic targets to mitigate heart failure complications in diabetic patients.

2.
Am J Physiol Heart Circ Physiol ; 326(6): H1406-H1419, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607343

RESUMO

Cardiovascular research relies heavily on the veracity of in vitro cardiomyocyte models, with H9c2 and HL-1 cell lines at the forefront due to their cardiomyocyte-like properties. However, the variability stemming from nonstandardized culturing and transfection methods poses a significant challenge to data uniformity and reliability. In this study, we introduce meticulously crafted protocols to enhance the culture and transfection of H9c2 and HL-1 cells, emphasizing the reduction of cytotoxic effects while improving transfection efficiency. Through the examination of polymer-based and lipid-based transfection methods, we offer a comparative analysis that underscores the heightened efficiency and reduced toxicity of these approaches. Our research provides an extensive array of step-by-step procedures designed to foster robust cell cultures and outlines troubleshooting practices to rectify issues of low transfection rates. We discuss the merits and drawbacks of both transfection techniques, equipping researchers with the knowledge to choose the most fitting method for their experimental goals. By offering a definitive guide to these cell lines' culturing and transfection, our work seeks to set a new standard in procedural consistency, ensuring that the cardiovascular research community can achieve more dependable and reproducible results, thereby pushing the boundaries of current methodologies toward impactful clinical applications.NEW & NOTEWORTHY We have developed standardized protocols that significantly reduce cytotoxicity and enhance transfection efficiency in H9c2 and HL-1 cardiomyocyte cell lines. Our detailed comparative analysis of polymer-based and lipid-based transfection methods has identified optimized approaches with superior performance. Accompanying these protocols are comprehensive troubleshooting strategies to address common issues related to low transfection rates. Implementing these protocols is expected to yield more consistent and reproducible results, driving the field of cardiovascular research toward impactful clinical breakthroughs.


Assuntos
Lipídeos , Miócitos Cardíacos , Transfecção , Miócitos Cardíacos/metabolismo , Linhagem Celular , Animais , Lipídeos/toxicidade , Lipídeos/química , Ratos , Sobrevivência Celular , Polímeros/toxicidade , Camundongos
3.
Can J Physiol Pharmacol ; 102(3): 196-205, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992301

RESUMO

Although the collagenase enzyme activity of matrix metalloproteinase-9 (MMP9) is well-documented, its non-enzymatic functions remain less understood. The interaction between intracellular superoxide dismutase-1 (SOD1) and MMP9 is known, with SOD1 suppressing MMP9. However, the mechanism by which MMP9, a secretory protein, influences the extracellular antioxidant superoxide dismutase-3 (SOD3) is not yet clear. To explore MMP9's regulatory impact on SOD3, we employed human embryonic kidney-293 cells, transfecting them with MMP9 overexpresssion and catalytic-site mutant plasmids. Additionally, MMP9 overexpressing cells were treated with an MMP9 activator and inhibitor. Analyses of both cell lysates and culture medium provided insights into MMP9's intracellular and extracellular regulatory roles. In-silico analysis and experimental approaches like proximal ligation assay and co-immunoprecipitation were utilized to delineate the protein-protein interactions between MMP9 and SOD3. Our findings indicate that activated MMP9 enhances SOD3 levels, a regulation not hindered by MMP9 inhibitors. Intriguingly, catalytically inactive MMP9 appeared to reduce SOD3 levels, likely due to MMP9's binding with SOD3, leading to their proteolytic degradation. This MMP9 influence on SOD3 was consistent in both intracellular and extracellular environments, suggesting a parallel in MMP9-SOD3 interactions across these domains. Ultimately, this study unveils a novel interaction between MMP9 and SOD3, highlighting the unique regulatory role of catalytically inactive MMP9 in diminishing SOD3 levels, contrasting its usual upregulation by active MMP9.


Assuntos
Metaloproteinase 9 da Matriz , Superóxido Dismutase , Humanos , Superóxido Dismutase-1/genética , Antioxidantes , Bioensaio
4.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R665-R681, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746707

RESUMO

Ferroptosis is a newly identified myocardial cell death mechanism driven by iron-dependent lipid peroxidation. The presence of elevated intramyocardial lipid levels and excessive iron in patients with diabetes suggest a predominant role of ferroptosis in diabetic cardiomyopathy. As myocardial cell death is a precursor of heart failure, and intensive glycemic control cannot abate the increased risk of heart failure in patients with diabetes, targeting myocardial cell death via ferroptosis is a promising therapeutic avenue to prevent and/or treat diabetic cardiomyopathy. This review provides updated and comprehensive molecular mechanisms underpinning ferroptosis, clarifies several misconceptions about ferroptosis, emphasizes the importance of ferroptosis in diabetes-induced myocardial cell death, and offers valuable approaches to evaluate and target ferroptosis in the diabetic heart. Furthermore, basic concepts and ideas presented in this review, including glutathione peroxidase-4-independent and mitochondrial mechanisms of ferroptosis, are also important for investigating ferroptosis in other diabetic organs, as well as nondiabetic and metabolically compromised hearts.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Insuficiência Cardíaca , Humanos , Ferro/metabolismo , Morte Celular/fisiologia , Peroxidação de Lipídeos
5.
Cell Death Discov ; 9(1): 111, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012234

RESUMO

Cytomegalovirus (CMV) is a widely prevalent herpesvirus that reaches seroprevalence rates of up to 95% in several parts of the world. The majority of CMV infections are asymptomatic, albeit they have severe detrimental effects on immunocompromised individuals. Congenital CMV infection is a leading cause of developmental abnormalities in the USA. CMV infection is a significant risk factor for cardiovascular diseases in individuals of all ages. Like other herpesviruses, CMV regulates cell death for its replication and establishes and maintains a latent state in the host. Although CMV-mediated regulation of cell death is reported by several groups, it is unknown how CMV infection affects necroptosis and apoptosis in cardiac cells. Here, we infected primary cardiomyocytes, the contractile cells in the heart, and primary cardiac fibroblasts with wild-type and cell-death suppressor deficient mutant CMVs to determine how CMV regulates necroptosis and apoptosis in cardiac cells. Our results reveal that CMV infection prevents TNF-induced necroptosis in cardiomyocytes; however, the opposite phenotype is observed in cardiac fibroblasts. CMV infection also suppresses inflammation, reactive oxygen species (ROS) generation, and apoptosis in cardiomyocytes. Furthermore, CMV infection improves mitochondrial biogenesis and viability in cardiomyocytes. We conclude that CMV infection differentially affects the viability of cardiac cells.

6.
Curr Diab Rep ; 21(12): 52, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902085

RESUMO

PURPOSE OF REVIEW: Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS: Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , MicroRNAs , Cardiomiopatias Diabéticas/genética , Humanos , Insulina , MicroRNAs/genética , Miócitos Cardíacos , Poliaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...