Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 8: 579190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282812

RESUMO

On March 13, 2020, the World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) caused by the novel coronavirus SARS-CoV2 a pandemic. Since then the virus has infected over 9.1 million individuals and resulted in over 470,000 deaths worldwide (as of June 24, 2020). Here, we discuss the spatial correlation between county population health rankings and the incidence of COVID-19 cases and COVID-19 related deaths in the United States. We analyzed the spread of the disease based on multiple variables at the county level, using publicly available data on the numbers of confirmed cases and deaths, intensive care unit beds and socio-demographic, and healthcare resources in the U.S. Our results indicate substantial geographical variations in the distribution of COVID-19 cases and deaths across the US counties. There was significant positive global spatial correlation between the percentage of Black Americans and cases of COVID-19 (Moran I = 0.174 and 0.264, p < 0.0001). A similar result was found for the global spatial correlation between the percentage of Black American and deaths due to COVID-19 at the county level in the U.S. (Moran I = 0.264, p < 0.0001). There was no significant spatial correlation between the Hispanic population and COVID-19 cases and deaths; however, a higher percentage of non-Hispanic white was significantly negatively spatially correlated with cases (Moran I = -0.203, p < 0.0001) and deaths (Moran I = -0.137, p < 0.0001) from the disease. This study showed significant but weak spatial autocorrelation between the number of intensive care unit beds and COVID-19 cases (Moran I = 0.08, p < 0.0001) and deaths (Moran I = 0.15, p < 0.0001), respectively. These findings provide more detail into the interplay between the infectious disease and healthcare-related characteristics of the population. Only by understanding these relationships will it be possible to mitigate the rate of spread and severity of the disease.


Assuntos
COVID-19/epidemiologia , Disparidades nos Níveis de Saúde , Pandemias , Análise Espacial , Bases de Dados Factuais , Diabetes Mellitus/epidemiologia , Humanos , Unidades de Terapia Intensiva/provisão & distribuição , Obesidade/epidemiologia , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
2.
Epidemiol Infect ; 148: e166, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32753078

RESUMO

Following the importation of coronavirus disease (COVID-19) into Nigeria on 27 February 2020 and then the outbreak, the question is: How do we anticipate the progression of the ongoing epidemic following all the intervention measures put in place? This kind of question is appropriate for public health responses and it will depend on the early estimates of the key epidemiological parameters of the virus in a defined population.In this study, we combined a likelihood-based method using a Bayesian framework and compartmental model of the epidemic of COVID-19 in Nigeria to estimate the effective reproduction number (R(t)) and basic reproduction number (R0) - this also enables us to estimate the initial daily transmission rate (ß0). We further estimate the reported fraction of symptomatic cases. The models are applied to the NCDC data on COVID-19 symptomatic and death cases from 27 February 2020 and 7 May 2020.In this period, the effective reproduction number is estimated with a minimum value of 0.18 and a maximum value of 2.29. Most importantly, the R(t) is strictly greater than one from 13 April till 7 May 2020. The R0 is estimated to be 2.42 with credible interval: (2.37-2.47). Comparing this with the R(t) shows that control measures are working but not effective enough to keep R(t) below 1. Also, the estimated fraction of reported symptomatic cases is between 10 and 50%.Our analysis has shown evidence that the existing control measures are not enough to end the epidemic and more stringent measures are needed.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Epidemias/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Prática de Saúde Pública , Teorema de Bayes , COVID-19 , Humanos , Funções Verossimilhança , Nigéria/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...