Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(12): 15595-15604, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926805

RESUMO

A direct external input energy source (e.g., light, chemical reaction, redox potential, etc.) is compulsory to supply energy to rotary motors for accomplishing rotation around the axis. The stator leads the direction of rotation, and a sustainable rotation requires two mutual input energy supplies (e.g., light and heat, light and pH or metal ion, etc.); however, there are some exceptions (e.g., covalent single bond rotors and/or motors). On the contrary, our experiment suggested that double ratchet rotary motors (DRMs) can harvest power from available thermal noise, kT, for sustainable rotation around the axis. Under a scanning tunneling microscope, we have imaged live thermal noise movement as a dynamic orbital density and resolved the density diagram up to the second derivative. A second input energy can synchronize multiple rotors to afford a measurable output. Therefore, we hypothesized that rotation control in a DRM must be evolved from an orbital-level information transport channel between the two coupled rotors but was not limited to the second input energy. A DRM comprises a Brownian rotor and a power stroke rotor coupled to a -C≡C- stator, where the transport of information through coupled orbitals between the two rotors is termed the vibrational information flow chain (VIFC). We test this hypothesis by studying the DRM's density functional theory calculation and variable-temperature 1H nuclear magnetic resonance. Additionally, we introduced inbuilt pawl-like functional moieties into a DRM to create different electronic environments by changing proton intercalation interactions, which gated information processing through the VIFC. The results show the VIFC can critically impact the motor's noise harvesting, resulting in variable rotational motions in DRMs.

2.
RSC Adv ; 12(52): 33567-33583, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505716

RESUMO

Fixation of atmospheric dinitrogen in plants by [Mo-Fe] cofactor of nitrogenase enzyme takes place efficiently under atmospheric pressure and normal temperature. In search for an alternative methodology for the highly energy intensive Haber-Bosch process, design and synthesis of highly efficient inorganic and organometallic complexes by mimicking the structure and function of [Mo-Fe] cofactor system is highly desirable for ammonia synthesis from dinitrogen. An ideal catalyst for ammonia synthesis should effectively catalyse the reduction of dinitrogen in the presence of a proton source under mild to moderate conditions, and thereby, significantly reducing the cost of ammonia production and increasing the energy efficacy of the process. In the light of current research, it is evident that there is a plenty of scope for the development and enhanced performance of the inorganic and organometallic catalysts for ammonia synthesis under ambient temperature and pressure. The review furnishes a comprehensive outlook of numerous organometallic catalysts used in the synthesis of ammonia from dinitrogen in the past few decades.

3.
Dalton Trans ; 51(40): 15239-15245, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36205190

RESUMO

A second-generation hydrogen bond donor (HBD) anion receptor with an inner amide cavity and an outer urea cavity can selectively and efficiently extract arsenate (AsO43-) from water in the presence of competitive oxoanions and halides. The X-ray structure showed encapsulation of AsO43- in a π-stacked dimeric capsular assembly of the receptor, the first crystallography-based example of pentavalent AsO43- trianion recognition by a HBD receptor.


Assuntos
Arseniatos , Ureia , Amidas/química , Arseniatos/química , Modelos Moleculares , Ureia/química , Água/química
4.
Sci Rep ; 12(1): 14613, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028653

RESUMO

The catalytic activity of 1D 2-Picolinic acid based Cu (II) coordination polymer (CP1) in click reaction was evaluated to generate 1,4-disubstituted 1,2,3-triazoles selectively. The CP1 catalyst loading of 2 mol% was applied successfully in the reaction for primary azides with diverse functionalities of terminal alkynes in green solvent (EG/H2O). Moreover, the one-pot, multicomponent click reaction involving benzyl bromide, sodium azide, and phenylacetylene was also catalyzed by CP1. The findings show that 1D 2-Picolinic acid based Cu (II) coordination polymer catalytic systems are highly efficient for green click triazoles synthesis. DFT calculation supported the plausible mechanism involved in the CP1 catalyzed click reaction.


Assuntos
Polímeros , Triazóis , Alcinos , Azidas , Catálise , Ácidos Picolínicos
5.
Dalton Trans ; 50(19): 6735, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33960348

RESUMO

Correction for 'A ferrocene functionalized Schiff base containing Cu(ii) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition' by Firdaus Rahaman Gayen et al., Dalton Trans., 2020, 49, 6578-6586, DOI: 10.1039/d0dt00915f.

6.
Dalton Trans ; 49(20): 6578-6586, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32342974

RESUMO

Atom economy is one of the major factors in developing catalysis chemistry. Using the minimum amount of catalyst to obtain the maximum product yield is of the utmost priority in catalysis, which drives us to use parts-per-million (ppm) levels of catalyst loadings in syntheses. In this context, a new ferrocene functionalized Schiff base and its copper(ii) complex have been synthesized and characterized. This Cu(ii) complex is employed as a catalyst for popular 'click chemistry', where 1,2,3-triazoles are the end product. As low as 5 ppm catalyst loading is enough to produce gram scale product, and highest turnover number (TON) and turnover frequency (TOF) values of 140 000 and 70 000 h-1 are achieved, respectively. Furthermore, this highly efficient protocol has been successfully applied to the preparation of diverse functionalized materials with pharmaceutical, labelling and supramolecular properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...