Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107759, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736052

RESUMO

Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.

2.
Microorganisms ; 10(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456874

RESUMO

The development of antimalarial drug resistance is an ongoing problem threatening progress towards the elimination of malaria, and antimalarial treatments are urgently needed for drug-resistant malaria infections. Host-directed therapies (HDT) represent an attractive strategy for the development of new antimalarials with untapped targets and low propensity for resistance. In addition, drug repurposing in the context of HDT can lead to a substantial decrease in the time and resources required to develop novel antimalarials. Host BCL-xL is a target in anti-cancer therapy and is essential for the development of numerous intracellular pathogens. We hypothesised that red blood cell (RBC) BCL-xL is essential for Plasmodium development and tested this hypothesis using six BCL-xL inhibitors, including one FDA-approved compound. All BCL-xL inhibitors tested impaired proliferation of Plasmodium falciparum 3D7 parasites in vitro at low micromolar or sub-micromolar concentrations. Western blot analysis of infected cell fractions and immunofluorescence microscopy assays revealed that host BCL-xL is relocated from the RBC cytoplasm to the vicinity of the parasite upon infection. Further, immunoprecipitation of BCL-xL coupled with mass spectrometry analysis identified that BCL-xL forms unique molecular complexes with human µ-calpain in uninfected RBCs, and with human SHOC2 in infected RBCs. These results provide interesting perspectives for the development of host-directed antimalarial therapies and drug repurposing efforts.

3.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647038

RESUMO

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Assuntos
Separação Celular/métodos , Miocárdio/citologia , Miócitos Cardíacos , Análise de Célula Única/métodos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/classificação , Miócitos Cardíacos/citologia
4.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074290

RESUMO

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/etiologia , Fibroblastos/patologia , Miocárdio/patologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Dieta Hiperlipídica , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estreptozocina , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
5.
Front Cell Infect Microbiol ; 11: 630812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777843

RESUMO

Erythrocytes possess an unusual programmed cell death mechanism termed eryptosis, and several compounds have been previously claimed to induce eryptosis in vitro. Malaria parasites (genus Plasmodium) reside in erythrocytes during the pathogenic part of their life cycle, and the potential of several eryptosis inducers to act as antimalarials has been tested in recent years. However, the eryptosis-inducing capacity of these compounds varies significantly between eryptosis-focused studies and malaria investigations. Here, we investigated the reasons for these discrepancies, we developed a protocol to investigate eryptosis in malaria cultures and we re-evaluated the potential of eryptosis inducers as antimalarials. First, we showed that eryptosis read-out in vitro is dependent on culture conditions. Indeed, conditions that have consistently been used to study eryptosis do not support P. falciparum growth and prime erythrocytes for eryptosis. Next, we defined culture conditions that allow the detection of eryptosis while supporting P. falciparum survival. Finally, we selected six eryptosis-inducers based on their clinical use, molecular target and antimalarial activities, and re-evaluated their eryptosis inducing capacities and their potential as antimalarials. We demonstrate that none of these compounds affect the viability of naïve or P. falciparum-infected erythrocytes in vitro. Nevertheless, three of these compounds impair parasite development, although through a mechanism unrelated to eryptosis and yet to be elucidated. We conclude that careful consideration of experimental set up is key for the accurate assessment of the eryptosis-inducing potential of compounds and their evaluation as potential antimalarials.


Assuntos
Antimaláricos , Eriptose , Malária Falciparum , Malária , Plasmodium , Eritrócitos , Humanos , Malária/tratamento farmacológico , Plasmodium falciparum
6.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32795101

RESUMO

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Assuntos
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Análise de Célula Única , Estresse Fisiológico , Animais , Cardiomegalia/patologia , Fibroblastos/patologia , Fibrose , Camundongos , Miocárdio/patologia , Pirofosfatases/metabolismo , Trombospondinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...