Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(6): 1003-1012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38451359

RESUMO

PURPOSE: Magnetic resonance (MR) imaging targeted prostate cancer (PCa) biopsy enables precise sampling of MR-detected lesions, establishing its importance in recommended clinical practice. Planning for the ultrasound-guided procedure involves pre-selecting needle sampling positions. However, performing this procedure is subject to a number of factors, including MR-to-ultrasound registration, intra-procedure patient movement and soft tissue motions. When a fixed pre-procedure planning is carried out without intra-procedure adaptation, these factors will lead to sampling errors which could cause false positives and false negatives. Reinforcement learning (RL) has been proposed for procedure plannings on similar applications such as this one, because intelligent agents can be trained for both pre-procedure and intra-procedure planning. However, it is not clear if RL is beneficial when it comes to addressing these intra-procedure errors. METHODS: In this work, we develop and compare imitation learning (IL), supervised by demonstrations of predefined sampling strategy, and RL approaches, under varying degrees of intra-procedure motion and registration error, to represent sources of targeting errors likely to occur in an intra-operative procedure. RESULTS: Based on results using imaging data from 567 PCa patients, we demonstrate the efficacy and value in adopting RL algorithms to provide intelligent intra-procedure action suggestions, compared to IL-based planning supervised by commonly adopted policies. CONCLUSIONS: The improvement in biopsy sampling performance for intra-procedure planning has not been observed in experiments with only pre-procedure planning. These findings suggest a strong role for RL in future prospective studies which adopt intra-procedure planning. Our open source code implementation is available here .


Assuntos
Biópsia Guiada por Imagem , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/patologia , Próstata/cirurgia , Ultrassonografia de Intervenção/métodos , Aprendizado de Máquina
2.
Med Image Anal ; 90: 102935, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716198

RESUMO

The prowess that makes few-shot learning desirable in medical image analysis is the efficient use of the support image data, which are labelled to classify or segment new classes, a task that otherwise requires substantially more training images and expert annotations. This work describes a fully 3D prototypical few-shot segmentation algorithm, such that the trained networks can be effectively adapted to clinically interesting structures that are absent in training, using only a few labelled images from a different institute. First, to compensate for the widely recognised spatial variability between institutions in episodic adaptation of novel classes, a novel spatial registration mechanism is integrated into prototypical learning, consisting of a segmentation head and an spatial alignment module. Second, to assist the training with observed imperfect alignment, support mask conditioning module is proposed to further utilise the annotation available from the support images. Extensive experiments are presented in an application of segmenting eight anatomical structures important for interventional planning, using a data set of 589 pelvic T2-weighted MR images, acquired at seven institutes. The results demonstrate the efficacy in each of the 3D formulation, the spatial registration, and the support mask conditioning, all of which made positive contributions independently or collectively. Compared with the previously proposed 2D alternatives, the few-shot segmentation performance was improved with statistical significance, regardless whether the support data come from the same or different institutes.

3.
Med Image Anal ; 82: 102620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148705

RESUMO

Prostate biopsy and image-guided treatment procedures are often performed under the guidance of ultrasound fused with magnetic resonance images (MRI). Accurate image fusion relies on accurate segmentation of the prostate on ultrasound images. Yet, the reduced signal-to-noise ratio and artifacts (e.g., speckle and shadowing) in ultrasound images limit the performance of automated prostate segmentation techniques and generalizing these methods to new image domains is inherently difficult. In this study, we address these challenges by introducing a novel 2.5D deep neural network for prostate segmentation on ultrasound images. Our approach addresses the limitations of transfer learning and finetuning methods (i.e., drop in performance on the original training data when the model weights are updated) by combining a supervised domain adaptation technique and a knowledge distillation loss. The knowledge distillation loss allows the preservation of previously learned knowledge and reduces the performance drop after model finetuning on new datasets. Furthermore, our approach relies on an attention module that considers model feature positioning information to improve the segmentation accuracy. We trained our model on 764 subjects from one institution and finetuned our model using only ten subjects from subsequent institutions. We analyzed the performance of our method on three large datasets encompassing 2067 subjects from three different institutions. Our method achieved an average Dice Similarity Coefficient (Dice) of 94.0±0.03 and Hausdorff Distance (HD95) of 2.28 mm in an independent set of subjects from the first institution. Moreover, our model generalized well in the studies from the other two institutions (Dice: 91.0±0.03; HD95: 3.7 mm and Dice: 82.0±0.03; HD95: 7.1 mm). We introduced an approach that successfully segmented the prostate on ultrasound images in a multi-center study, suggesting its clinical potential to facilitate the accurate fusion of ultrasound and MRI images to drive biopsy and image-guided treatments.


Assuntos
Redes Neurais de Computação , Próstata , Humanos , Masculino , Próstata/diagnóstico por imagem , Ultrassonografia , Imageamento por Ressonância Magnética/métodos , Pelve
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...