Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 254: 126896, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715447

RESUMO

Given their remarkable beneficial effects on plant growth, several Azospirillum isolates currently integrate the formulations of various commercial inoculants. Our research group isolated a new strain, Azospirillum sp. UENF-412522, from passion fruit rhizoplane. This isolate uses carbon sources that are partially distinct from closely-related Azospirillum isolates. Scanning electron microscopy analysis and population counts demonstrate the ability of Azospirillum sp. UENF-412522 to colonize the surface of passion fruit roots. In vitro assays demonstrate the ability of Azospirillum sp. UENF-412522 to fix atmospheric nitrogen, to solubilize phosphate and to produce indole-acetic acid. Passion fruit plantlets inoculated with Azospirillum sp. UENF-41255 showed increased shoot and root fresh matter by 13,8% and 88,6% respectively, as well as root dry matter by 61,4%, further highlighting its biotechnological potential for agriculture. We sequenced the genome of Azospirillum sp. UENF-412522 to investigate the genetic basis of its plant-growth promotion properties. We identified the key nif genes for nitrogen fixation, the complete PQQ operon for phosphate solubilization, the acdS gene that alleviates ethylene effects on plant growth, and the napCAB operon, which produces nitrite under anoxic conditions. We also found several genes conferring resistance to common soil antibiotics, which are critical for Azospirillum sp. UENF-412522 survival in the rhizosphere. Finally, we also assessed the Azospirillum pangenome and highlighted key genes involved in plant growth promotion. A phylogenetic reconstruction of the genus was also conducted. Our results support Azospirillum sp. UENF-412522 as a good candidate for bioinoculant formulations focused on plant growth promotion in sustainable systems.


Assuntos
Azospirillum , Genoma Bacteriano , Azospirillum/química , Azospirillum/classificação , Azospirillum/genética , Genoma Bacteriano/genética , Genômica , Passiflora/microbiologia , Fosfatos/metabolismo , Filogenia
2.
Plants (Basel) ; 10(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467151

RESUMO

The COBRA-like (COBL) gene family has been associated with the regulation of cell wall expansion and cellulose deposition. COBL mutants result in reduced levels and disorganized deposition of cellulose causing defects in the cell wall and inhibiting plant development. In this study, we report the identification of 24 COBL genes (GmCOBL) in the soybean genome. Phylogenetic analysis revealed that the COBL proteins are divided into two groups, which differ by about 170 amino acids in the N-terminal region. The GmCOBL genes were heterogeneously distributed in 14 of the 20 soybean chromosomes. This study showed that segmental duplication has contributed significantly to the expansion of the COBL family in soybean during all Glycine-specific whole-genome duplication events. The expression profile revealed that the expression of the paralogous genes is highly variable between organs and tissues of the plant. Only 20% of the paralogous gene pairs showed similar expression patterns. The high expression levels of some GmCOBLs suggest they are likely essential for regulating cell expansion during the whole soybean life cycle. Our comprehensive overview of the COBL gene family in soybean provides useful information for further understanding the evolution and diversification of COBL genes in soybean.

3.
Biotechnol Adv ; 44: 107616, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871186

RESUMO

History of metabolism originates with yeast making bread. In fact, study based on "Yeast" was so crucial in the development of the field of biochemistry that the word "enzyme" is derived from the Greek word meaning leavened (yeast). Yeast has always been a point of interest as a eukaryotic model system to demonstrate the metabolites and their function. In recent times their metabolites are widely studied to predict their role in various pathways. Many traditional and analytical techniques have been employed, but its study through metabolomics is of recent interest in research. The present review focuses on details about yeast metabolomics based on preliminary research on various analytical techniques along with computational approaches. The review also aimed to highlight machine learning and various inceptions of yeast metabolomics.


Assuntos
Metabolômica , Saccharomyces cerevisiae , Aprendizado de Máquina
4.
Mol Biol Rep ; 47(10): 7655-7673, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32979167

RESUMO

The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.


Assuntos
Basidiomycota/metabolismo , Endófitos/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oryza/microbiologia , Salinidade , Tolerância ao Sal
5.
Plant J ; 103(5): 1894-1909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445587

RESUMO

Soybean (Glycine max [L.] Merr.) is a major crop in animal feed and human nutrition, mainly for its rich protein and oil contents. The remarkable rise in soybean transcriptome studies over the past 5 years generated an enormous amount of RNA-seq data, encompassing various tissues, developmental conditions and genotypes. In this study, we have collected data from 1298 publicly available soybean transcriptome samples, processed the raw sequencing reads and mapped them to the soybean reference genome in a systematic fashion. We found that 94% of the annotated genes (52 737/56 044) had detectable expression in at least one sample. Unsupervised clustering revealed three major groups, comprising samples from aerial, underground and seed/seed-related parts. We found 452 genes with uniform and constant expression levels, supporting their roles as housekeeping genes. On the other hand, 1349 genes showed heavily biased expression patterns towards particular tissues. A transcript-level analysis revealed that 95% (70 963 of 74 490) of the assembled transcripts have intron chains exactly matching those from known transcripts, whereas 3256 assembled transcripts represent potentially novel splicing isoforms. The dataset compiled here constitute a new resource for the community, which can be downloaded or accessed through a user-friendly web interface at http://venanciogroup.uenf.br/resources/. This comprehensive transcriptome atlas will likely accelerate research on soybean genetics and genomics.


Assuntos
Atlas como Assunto , Glycine max/genética , RNA de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes Essenciais/genética , Genes de Plantas/genética
6.
Sci Rep ; 9(1): 9601, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270425

RESUMO

Gibberellins (GA) are key positive regulators of seed germination. Although the GA effects on seed germination have been studied in a number of species, little is known about the transcriptional reprogramming modulated by GA during this phase in species other than Arabidopsis thaliana. Here we report the transcriptome analysis of soybean embryonic axes during germination in the presence of paclobutrazol (PBZ), a GA biosynthesis inhibitor. We found a number of differentially expressed cell wall metabolism genes, supporting their roles in cell expansion during germination. Several genes involved in the biosynthesis and signaling of other phytohormones were also modulated, indicating an intensive hormonal crosstalk at the embryonic axis. We have also found 26 photosynthesis genes that are up-regulated by PBZ at 24 hours after imbibition (HAI) and down-regulated at 36 HAI, which led us to suggest that this is part of a strategy to implement an autotrophic growth program in the absence of GA-driven mobilization of reserves. Finally, 30 transcription factors (mostly from the MYB, bHLH, and bZIP families) were down-regulated by PBZ and are likely downstream GA targets that will drive transcriptional changes during germination.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/antagonistas & inibidores , Glycine max/genética , Triazóis/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Mol Biol ; 97(4-5): 435-449, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29956113

RESUMO

KEY MESSAGE: Here we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels. Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways. Here we report the systematic identification and classification of GID1s in 54 plants genomes, encompassing from bryophytes and lycophytes, to several monocots and eudicots. We investigated the evolutionary relationship of GID1s using a comparative genomics framework and found strong support for a previously proposed phylogenetic classification of this family in land plants. We identified lineage-specific expansions of particular subfamilies (i.e. GID1ac and GID1b) in different eudicot lineages (e.g. GID1b in legumes). Further, we found both, shared and divergent structural features between GID1ac and GID1b subgroups in eudicots that provide mechanistic insights on their functions. Gene expression data from several species show that at least one GID1 gene is expressed in every sampled tissue, with a strong bias of GID1b expression towards underground tissues and dry legume seeds (which typically have low GA levels). Taken together, our results indicate that GID1ac retained canonical GA signaling roles, whereas GID1b specialized in conditions of low GA concentrations. We propose that this functional specialization occurred initially at the gene expression level and was later fine-tuned by mutations that conferred greater GA affinity to GID1b, including a Phe residue in the GA-binding pocket. Finally, we discuss the importance of our findings to understand the diversification of GA perception mechanisms in land plants.


Assuntos
Embriófitas/genética , Genômica , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Evolução Biológica , Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Éxons/genética , Íntrons/genética , Modelos Moleculares , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Transdução de Sinais
8.
Gene ; 627: 85-93, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28600180

RESUMO

Despite the great morphological diversity of insects, there is a regularity in their digestive functions, which is apparently related to their physiology. In the present work we report the de novo midgut transcriptomes of four non-model insects from four distinct orders: Spodoptera frugiperda (Lepidoptera), Musca domestica (Diptera), Tenebrio molitor (Coleoptera) and Dysdercus peruvianus (Hemiptera). We employed a computational strategy to merge assemblies obtained with two different algorithms, which substantially increased the quality of the final transcriptomes. Unigenes were annotated and analyzed using the eggNOG database, which allowed us to assign some level of functional and evolutionary information to 79.7% to 93.1% of the transcriptomes. We found interesting transcriptional patterns, such as: i) the intense use of lysozymes in digestive functions of M. domestica larvae, which are streamlined and adapted to feed on bacteria; ii) the up-regulation of orthologous UDP-glycosyl transferase and cytochrome P450 genes in the whole midguts different species, supporting the existence of an ancient defense frontline to counter xenobiotics; iii) evidence supporting roles for juvenile hormone binding proteins in the midgut physiology, probably as a way to activate genes that help fight anti-nutritional substances (e.g. protease inhibitors). The results presented here shed light on the digestive and structural properties of the digestive systems of these distantly related species. Furthermore, the produced datasets will also be useful for scientists studying these insects.


Assuntos
Perfilação da Expressão Gênica , Insetos/classificação , Insetos/genética , Animais , Trato Gastrointestinal , Expressão Gênica
9.
Front Plant Sci ; 8: 1037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659964

RESUMO

Transcription factors (TFs) are the key players in gene expression and their study is highly significant for shedding light on the molecular mechanisms and evolutionary history of organisms. During host-pathogen interaction, extensive reprogramming of gene expression facilitated by TFs is likely to occur in both host and pathogen. To date, the knowledge about TF repertoire in filamentous fungi is in infancy. The necrotrophic fungus Ascochyta rabiei, that causes destructive Ascochyta blight (AB) disease of chickpea (Cicer arietinum), demands more comprehensive study for better understanding of Ascochyta-legume pathosystem. In the present study, we performed the genome-wide identification and analysis of TFs in A. rabiei. Taking advantage of A. rabiei genome sequence, we used a bioinformatic approach to predict the TF repertoire of A. rabiei. For identification and classification of A. rabiei TFs, we designed a comprehensive pipeline using a combination of BLAST and InterProScan software. A total of 381 A. rabiei TFs were predicted and divided into 32 fungal specific families of TFs. The gene structure, domain organization and phylogenetic analysis of abundant families of A. rabiei TFs were also carried out. Comparative study of A. rabiei TFs with that of other necrotrophic, biotrophic, hemibiotrophic, symbiotic, and saprotrophic fungi was performed. It suggested presence of both conserved as well as unique features among them. Moreover, cis-acting elements on promoter sequences of earlier predicted A. rabiei secretome were also identified. With the help of published A. rabiei transcriptome data, the differential expression of TF and secretory protein coding genes was analyzed. Furthermore, comprehensive expression analysis of few selected A. rabiei TFs using quantitative real-time polymerase chain reaction revealed variety of expression patterns during host colonization. These genes were expressed in at least one of the time points tested post infection. Overall, this study illustrates the first genome-wide identification and analysis of TF repertoire of A. rabiei. This work would provide the basis for further studies to dissect role of TFs in the molecular mechanisms during A. rabiei-chickpea interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...