Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nat Commun ; 14(1): 6208, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798264

RESUMO

Lysine acetylation has been discovered in thousands of non-histone human proteins, including most metabolic enzymes. Deciphering the functions of acetylation is key to understanding how metabolic cues mediate metabolic enzyme regulation and cellular signaling. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, is acetylated on multiple lysine residues. Using site-specifically acetylated G6PD, we show that acetylation can activate (AcK89) and inhibit (AcK403) G6PD. Acetylation-dependent inactivation is explained by structural studies showing distortion of the dimeric structure and active site of G6PD. We provide evidence for acetylation-dependent K95/97 ubiquitylation of G6PD and Y503 phosphorylation, as well as interaction with p53 and induction of early apoptotic events. Notably, we found that the acetylation of a single lysine residue coordinates diverse acetylation-dependent processes. Our data provide an example of the complex roles of acetylation as a posttranslational modification that orchestrates the regulation of enzymatic activity, posttranslational modifications, and apoptotic signaling.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Humanos , Lisina/metabolismo , Acetilação
2.
Front Immunol ; 14: 1116392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711610

RESUMO

Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.


Assuntos
Sistema Imunitário , Splicing de RNA , Humanos , Tipagem e Reações Cruzadas Sanguíneas , Nível de Saúde , Fatores de Processamento de RNA
3.
Stem Cell Res Ther ; 14(1): 152, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280691

RESUMO

Adult hematopoietic stem cells (HSCs) in the bone marrow (BM) are quiescent. Following perturbations, such as blood loss or infection, HSCs may undergo activation. Surprisingly, little is known about the earliest stages of HSCs activation. We utilize surface markers of HSCs activation, CD69 and CD317, revealing a response as early as 2 h after stimulation. The dynamic expression of HSCs activation markers varies between viral-like (poly-Inosinic-poly-Cytidylic) or bacterial-like (Lipopolysaccharide) immune stimuli. We further quantify dose response, revealing a low threshold, and similar sensitivity of HSCs and progenitors in the BM. Finally, we find a positive correlation between the expression of surface activation markers and early exit from quiescence. Our data show that the response of adult stem cells to immune stimulation is rapid and sensitive, rapidly leading HSCs out of quiescence.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo
4.
Blood ; 141(20): 2411-2413, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37200059
5.
Bone ; 171: 116727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36898571

RESUMO

BACKGROUND: Increased levels of bone marrow adipose tissue (BMAT) are negatively associated with skeletal health and hematopoiesis. BMAT is known to increase with age; however, the effect of long-term weight loss on BMAT is still unknown. OBJECTIVE: In this study, we examined BMAT response to lifestyle-induced weight loss in 138 participants (mean age 48 y; mean body mass index 31 kg/m2), who participated in the CENTRAL-MRI trial. METHODS: Participants were randomized for dietary intervention of low-fat or low-carb, with or without physical activity. Magnetic resonance imaging (MRI) was used to quantify BMAT and other fat depots at baseline, six and eighteen months of intervention. Blood biomarkers were also measured at the same time points. RESULTS: At baseline, the L3 vertebrae BMAT is positively associated with age, HDL cholesterol, HbA1c and adiponectin; but not with other fat depots or other metabolic markers tested. Following six months of dietary intervention, the L3 BMAT declined by an average of 3.1 %, followed by a return to baseline after eighteen months (p < 0.001 and p = 0.189 compared to baseline, respectively). The decrease of BMAT during the first six months was associated with a decrease in waist circumference, cholesterol, proximal-femur BMAT, and superficial subcutaneous adipose tissue (SAT), as well as with younger age. Nevertheless, BMAT changes did not correlate with changes in other fat depots. CONCLUSIONS: We conclude that physiological weight loss can transiently reduce BMAT in adults, and this effect is more prominent in younger adults. Our findings suggest that BMAT storage and dynamics are largely independent of other fat depots or cardio-metabolic risk markers, highlighting its unique functions.


Assuntos
Tecido Adiposo , Medula Óssea , Adulto , Humanos , Pessoa de Meia-Idade , Medula Óssea/patologia , Tecido Adiposo/metabolismo , Vértebras Lombares , Imageamento por Ressonância Magnética , Redução de Peso
6.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765677

RESUMO

Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.

7.
Immunol Cell Biol ; 101(3): 231-248, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36567516

RESUMO

Vaccination and natural infection both elicit potent humoral responses that provide protection from subsequent infections. The immune history of an individual following such exposures is in part encoded by antibodies. While there are multiple immunoassays for measuring antibody responses, the majority of these methods measure responses to a single antigen. A commonly used method for measuring antibody responses is ELISA-a semiquantitative assay that is simple to perform in research and clinical settings. Here, we present FLU-LISA (fluorescence-linked immunosorbent assay)-a novel antigen microarray-based assay for rapid high-throughput antibody profiling. The assay can be used for profiling immunoglobulin (Ig) G, IgA and IgM responses to multiple antigens simultaneously, requiring minimal amounts of sample and antigens. Using several influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen microarrays, we demonstrated the specificity and sensitivity of our novel assay and compared it with the traditional ELISA, using samples from mice, chickens and humans. We also showed that our assay can be readily used with dried blood spots, which can be collected from humans and wild birds. FLU-LISA can be readily used to profile hundreds of samples against dozens of antigens in a single day, and therefore offers an attractive alternative to the traditional ELISA.


Assuntos
COVID-19 , Influenza Humana , Humanos , Animais , Camundongos , Imunoadsorventes , Anticorpos Antivirais , Galinhas , SARS-CoV-2 , Antígenos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Imunoglobulina M
8.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806439

RESUMO

Harnessing immune effector cells to benefit cancer patients is becoming more and more prevalent in recent years. However, the increasing number of different therapeutic approaches, such as chimeric antigen receptors and armored chimeric antigen receptors, requires constant adjustments of the transgene expression levels. We have previously demonstrated it is possible to achieve spatial and temporal control of transgene expression as well as tailoring the inducing agents using the Chimeric Antigen Receptor Tumor Induced Vector (CARTIV) platform. Here we describe the next level of customization in our promoter platform. We have tested the functionality of three different minimal promoters, representing three different promoters' strengths, leading to varying levels of CAR expression and primary T cell function. This strategy shows yet another level of CARTIV gene regulation that can be easily integrated into existing CAR T systems.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Microambiente Tumoral/genética
9.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563109

RESUMO

Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.


Assuntos
Mieloma Múltiplo , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Mieloma Múltiplo/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
10.
Sci Rep ; 12(1): 7169, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504918

RESUMO

Cancer immunotherapies are highly potent and are gaining wide clinical usage. However, severe side effects require focusing effector immune cell activities on the tumor microenvironment (TME). We recently developed a chimeric antigen receptor tumor-induced vector (CARTIV), a synthetic promoter activated by TME factors. To improve CARTIV functions including background, activation levels, and synergism, we screened a library of promoters with variations in key positions. Here, we present a screening method involving turning ON/OFF stimulating TNFα and IFNγ cytokines, followed by sequential cell sorting. Sequencing of enriched promoters identified seventeen candidates, which were cloned and whose activities were then validated, leading to the identification of two CARTIVs with lower background and higher induction. We further combined a third hypoxia element with the two-factor CARTIV, demonstrating additional modular improvement. Our study presents a method of fine-tuning synthetic promoters for desired immunotherapy needs.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Biblioteca Gênica , Humanos , Neoplasias/terapia , Regiões Promotoras Genéticas
11.
Cells ; 11(3)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35159159

RESUMO

Myeloid progenitors are intermediates between Hematopoietic Stem Cells (HSCs) and Myeloid effector progeny. In mouse bone marrow, they are part of the Lineage- cKit+ Sca1- (LK) compartment. To date, most researchers used CD34 and FcγR surface markers for the dissection of this compartment into various populations. Surprisingly, however, this approach does not provide distinct separation by fluorescence-activated cell sorting (FACS). In this study, we suggest using CD150 instead of FcγR. We re-analyzed published single-cell RNA-Seq data and found that CD34/CD150 provides better sub-populations separation, compared to the "classical" CD34/FcγR-based approach. We confirm our findings by independent FACS analysis. We demonstrate comparable differentiation potential of the newly-obtained LK sub-populations, like previous "classical" ones. Therefore, we suggest the CD34/CD150 gating strategy, utilizing commonly-used surface markers, as a robust and reproducible separation of the LK compartment into distinct sub-populations.


Assuntos
Células-Tronco Hematopoéticas , Receptores de IgG , Animais , Antígenos CD34/metabolismo , Moléculas de Adesão Celular/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Células Progenitoras Mieloides , Receptores de IgG/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
12.
Stem Cell Reports ; 16(8): 1884-1893, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297939

RESUMO

Immune cells are generated from hematopoietic stem cells (HSCs) in the bone marrow (BM). Immune stimulation can rapidly activate HSCs out of their quiescent state to accelerate the generation of immune cells. HSCs' activation follows various viral or bacterial stimuli, and we sought to investigate the hypersensitivity immune response. Surprisingly, the Ova-induced hypersensitivity peritonitis model finds no significant changes in BM HSCs. HSC markers cKIT, SCA1, CD48, CD150, and the Fgd5-mCherry reporter showed no significant difference from control. Functionally, hypersensitivity did not alter HSCs' potency, as assayed by transplantation. We further characterized the possible impact of hypersensitivity using RNA-sequencing of HSCs, finding minor changes at the transcriptome level. Moreover, hypersensitivity induced no significant change in the proliferative state of HSCs. Therefore, this study suggests that, in contrast to other immune stimuli, hypersensitivity has no impact on HSCs.


Assuntos
Imunidade Adaptativa/imunologia , Células da Medula Óssea/imunologia , Células-Tronco Hematopoéticas/imunologia , Hipersensibilidade/imunologia , Transcriptoma/imunologia , Animais , Ataxina-1/genética , Ataxina-1/imunologia , Ataxina-1/metabolismo , Células da Medula Óssea/metabolismo , Antígeno CD48/genética , Antígeno CD48/imunologia , Antígeno CD48/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA-Seq/métodos , Transcriptoma/genética
13.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140316

RESUMO

BACKGROUND: Metastasis is the major cause of death in patients with cancer. Myeloid skewing of hematopoietic cells is a prominent promoter of metastasis. However, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern from hematopoietic stem and progenitor cells (HSPCs) have not been explored. METHODS: We used a unique model system consisting of tumor cell clones with low metastatic potential or high metastatic potential (met-low and met-high, respectively) to investigate the fate of HSPC differentiation using murine melanoma and breast carcinoma. Single-cell RNA sequencing (scRNA-seq) analysis was performed on HSPC obtained from the BM of met-low and met-high tumors. A proteomic screen of tumor-conditioned medium integrated with the scRNA-seq data analysis was performed to analyze the potential cross talk between cancer cells and HSPCs. Adoptive transfer of tumor-educated HSPC subsets obtained from green fluorescent protein (GFP)+ tagged mice was then carried out to identify the contribution of committed HSPCs to tumor spread. Peripheral mononuclear cells obtained from patients with breast and lung cancer were analyzed for HSPC subsets. RESULTS: Mice bearing met-high tumors exhibited a significant increase in the percentage of HSPCs in the BM in comparison with tumor-free mice or mice bearing met-low tumors. ScRNA-seq analysis of these HSPCs revealed that met-high tumors enriched the monocyte-dendritic progenitors (MDPs) but not granulocyte-monocyte progenitors (GMPs). A proteomic screen of tumor- conditioned medium integrated with the scRNA-seq data analysis revealed that the interleukin 6 (IL-6)-IL-6 receptor axis is highly active in HSPC-derived MDP cells. Consequently, loss of function and gain of function of IL-6 in tumor cells resulted in decreased and increased metastasis and corresponding MDP levels, respectively. Importantly, IL-6-educated MDPs induce metastasis within mice bearing met-low tumors-through further differentiation into immunosuppressive macrophages and not dendritic cells. Consistently, MDP but not GMP levels in peripheral blood of breast and lung cancer patients are correlated with tumor aggressiveness. CONCLUSIONS: Our study reveals a new role for tumor-derived IL-6 in hijacking the HSPC differentiation program toward prometastatic MDPs that functionally differentiate into immunosuppressive monocytes to support the metastatic switch.


Assuntos
Células Dendríticas/metabolismo , Interleucina-6/metabolismo , Monócitos/metabolismo , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Metástase Neoplásica
14.
Sci Rep ; 11(1): 7676, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828163

RESUMO

IL-2 is the master-regulator cytokine for T cell dependent responses and is crucial for proliferation and survival of T cells. However, IL-2-based treatments remained marginal, in part due to short half-life. Thus, we aimed to extend IL-2 half-life by flanking the IL-2 core with sequences derived from the extensively glycosylated hinge region of the NCR2 receptor. We termed this modified IL-2: "S2A". Importantly, S2A blood half-life was extended 14-fold compared to the clinical grade IL-2, Proleukin. Low doses inoculation of S2A significantly enhanced induction of Tregs (CD4+ Regulatory T cells) in vivo, as compared to Proleukin, while both S2A and Proleukin induced low levels of CD8+ T cells. In a B16 metastatic melanoma model, S2A treatment was unable to reduce the metastatic capacity of B16 melanoma, while enhancing induction and recruitment of Tregs, compared to Proleukin. Conversely, in two autoimmune models, rheumatoid arthritis and DSS-induced colitis, S2A treatment significantly reduced the progression of disease compared to Proleukin. Our results suggest new avenues for generating long-acting IL-2 for long-standing treatment and a new technique for manipulating short-life proteins for clinical and research uses.


Assuntos
Autoimunidade/efeitos dos fármacos , Interleucina-2/análogos & derivados , Receptor 2 Desencadeador da Citotoxicidade Natural/química , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Artrite Reumatoide/prevenção & controle , Preparações de Ação Retardada , Avaliação Pré-Clínica de Medicamentos , Glicosilação , Meia-Vida , Interleucina-2/administração & dosagem , Interleucina-2/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Cell Death Dis ; 12(2): 193, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602907

RESUMO

Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.


Assuntos
Transformação Celular Viral , Células-Tronco Hematopoéticas/virologia , Lentivirus/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Mieloide Aguda/genética , Oncogenes , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Imunocompetência , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/virologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/virologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Transplante Isogênico , Vidarabina/análogos & derivados , Vidarabina/farmacologia
16.
Commun Biol ; 4(1): 143, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514819

RESUMO

Harnessing the immune-system to eradicate cancer is becoming a reality in recent years. Engineered immune cells, such as chimeric antigen receptor (CAR) T cells, are facing the danger of an overt life-threatening immune response due to the ON-target OFF-tumor cytotoxicity and Cytokine Release Syndrome. We therefore developed synthetic promoters for regulation of gene expression under the control of inflammation and Hypoxia-induced signals that are associated with the tumor microenvironment (TME). We termed this methodology as chimeric-antigen-receptor-tumor-induced-vector (CARTIV). For proof of concept, we studied synthetic promoters based on promoter-responsive elements (PREs) of IFNγ, TNFα and hypoxia; triple PRE-based CARTIV promoter manifested a synergistic activity in cell-lines and potent activation in human primary T-cells. CARTIV platform can improve safety of CAR T-cells or other engineered immune-cells, providing TME-focused activity and opening a therapeutic window for many tumor-associated antigens that are also expressed by non-tumor healthy tissues.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia Adotiva , Regiões Promotoras Genéticas , Receptores de Antígenos Quiméricos/genética , Linfócitos T/transplante , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Interferon gama/genética , Interferon gama/farmacologia , Cinética , Camundongos Endogâmicos NOD , NF-kappa B/genética , Estudo de Prova de Conceito , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Hipóxia Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Methods Mol Biol ; 2185: 399-410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165863

RESUMO

Reprogramming proved the possibility to change cell identity by transient overexpression of defined transcription factors. However, the efficiencies of pioneer protocols are extremely low, and mechanistic understanding is still under intensive research. Hematopoietic stem cells (HSCs) are prototypic adult stem cells, leading scientific research and clinical applications. We had reported the possibility of direct reprogramming of blood cells into induced-HSCs. In this chapter, we detail the protocol and elaborate information on critical steps. From the identification of candidate factors, through cloning and lentiviral production, this protocol can help anyone interested in reprogramming toward the adult stem cell state. A detailed protocol should enable new ideas to realize and further open new frontiers for adult stem cell research.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Animais , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos
18.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096693

RESUMO

Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure-function dynamics of ligands and RTKs.


Assuntos
Proteínas Proto-Oncogênicas c-kit/agonistas , Fator de Células-Tronco/farmacologia , Linhagem Celular Tumoral , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/genética
19.
Cells ; 9(6)2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575785

RESUMO

The identification of human obesity sub-types may improve the clinical management of patients with obesity and uncover previously unrecognized obesity mechanisms. Here, we hypothesized that adipose tissue (AT) mast cells (MC) estimation could be a mark for human obesity sub-phenotyping beyond current clinical-based stratifications, both cross-sectionally and prospectively. We estimated MC accumulation using immunohistochemistry and gene expression in abdominal visceral AT (VAT) and subcutaneous (SAT) in a human cohort of 65 persons with obesity who underwent elective abdominal (mainly bariatric) surgery, and we validated key results in two clinically similar, independent cohorts (n = 33, n = 56). AT-MC were readily detectable by immunostaining for either c-kit or tryptase and by assessing the gene expression of KIT (KIT Proto-Oncogene, Receptor Tyrosine Kinase), TPSB2 (tryptase beta 2), and CMA1 (chymase 1). Participants were characterized as VAT-MClow if the expression of both CMA1 and TPSB2 was below the median. Higher expressers of MC genes (MChigh) were metabolically healthier (lower fasting glucose and glycated hemoglobin, with higher pancreatic beta cell reserve (HOMA-ß), and lower triglycerides and alkaline-phosphatase) than people with low expression (MClow). Prospectively, higher MC accumulation in VAT or SAT obtained during surgery predicted greater postoperative weight-loss response to bariatric surgery. Jointly, high AT-MC accumulation may be used to clinically define obesity sub-phenotypes, which are associated with a "healthier" cardiometabolic risk profile and a better weight-loss response to bariatric surgery.


Assuntos
Tecido Adiposo/metabolismo , Mastócitos/metabolismo , Obesidade/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Proto-Oncogene Mas
20.
Artigo em Inglês | MEDLINE | ID: mdl-32211339

RESUMO

The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Evasão da Resposta Imune , Ligantes , Polissacarídeos , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...