Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 39(1): 158, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888695

RESUMO

Orthopedic surgeons face a significant challenge in treating critical-size femoral defects (CSFD) caused by osteoporosis (OP), trauma, infection, or bone tumor resections. In this study for the first time, the application of photobiomodulation (PBM) and bone marrow mesenchymal stem cell-conditioned medium (BM-MSC-CM) to improve the osteogenic characteristics of mineralized bone scaffold (MBS) in ovariectomy-induced osteoporotic (OVX) rats with a CSFD was tested. Five groups of OVX rats with CSFD were created: (1) Control (C); (2) MBS; (3) MBS + CM; (4) MBS + PBM; (5) MBS + CM + PBM. Computed tomography scans (CT scans), compression indentation tests, and histological and stereological analyses were carried out after euthanasia at 12 weeks following implantation surgery. The CT scan results showed that CSFD in the MBS + CM, MBS + PBM, and MBS + CM + PBM groups was significantly smaller compared to the control group (p = 0.01, p = 0.04, and p = 0.000, respectively). Moreover, the CSFD size was substantially smaller in the MBS + CM + PBM treatment group than in the MBS, MBS + CM, and MBS + PBM treatment groups (p = 0.004, p = 0.04, and p = 0.01, respectively). The MBS + PBM and MBS + CM + PBM treatments had significantly increased maximum force relative to the control group (p = 0.01 and p = 0.03, respectively). Bending stiffness significantly increased in MBS (p = 0.006), MBS + CM, MBS + PBM, and MBS + CM + PBM treatments (all p = 0.004) relative to the control group. All treatment groups had considerably higher new trabecular bone volume (NTBV) than the control group (all, p = 0.004). Combined therapies with MBS + PBM and MBS + CM + PBM substantially increased the NTBV relative to the MBS group (all, p = 0.004). The MBS + CM + PBM treatment had a markedly higher NTBV than the MBS + PBM (p = 0.006) and MBS + CM (p = 0.004) treatments. MBS + CM + PBM, MBS + PBM, and MBS + CM treatments significantly accelerated bone regeneration of CSFD in OVX rats. PBM + CM enhanced the osteogenesis of the MBS compared to other treatment groups.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Animais , Ratos , Terapia com Luz de Baixa Intensidade/métodos , Meios de Cultivo Condicionados , Feminino , Ratos Sprague-Dawley , Fêmur/efeitos da radiação , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Osteoporose/radioterapia , Osteoporose/terapia , Ovariectomia , Alicerces Teciduais , Osteogênese/efeitos da radiação , Regeneração Óssea/efeitos da radiação
2.
J Lasers Med Sci ; 13: e10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996492

RESUMO

Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.

3.
Photobiomodul Photomed Laser Surg ; 40(4): 261-272, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35452299

RESUMO

Objective: This study examined the use of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) to enhance the osteogenic properties of demineralized bone matrix (DBM) scaffold in a critical size femoral defect (CSFD) of ovariectomy-induced osteoporotic (OVX) rats. Background: PBM could be used as a unique strategy to enhance the osteogenic potential of DBMs seeded with ASCs. Materials and methods: The OVX rats with a CSFD were divided into six groups: (1) Control (C); (2) DBM scaffold alone (S); (3) S+PBM; (4) S+alendronate; (5) S+ASC; (6) S+PBM+ASC. Stereological analysis, real-time polymerase chain reaction (RT-PCR), and cone-beam computed tomography (CBCT) were performed after euthanization at 4 and 8 weeks postimplantation surgery. Results: In the 8th week, Groups 4 and 6 showed a greatly high new trabecular bone volume than the scaffold group (all, p = 0.009). The CBCT data demonstrated that the CSFD was significantly smaller in the two, three, and six groups relative to the control group (p = 0.01, p = 0.000, and p = 0.000, respectively). RT-PCR revealed that Groups 3 and 6 had higher messenger RNA levels of osteocalcin (OC) and osteoprotegerin (OPG) compared with the control group (p = 0.05). Group 6 had significantly lower expression of receptor activator of nuclear factor-κB ligand (RANKL) compared with the control group (p = 0.02). Conclusions: The combination of DBM plus PBM plus ASC, as well as DBM plus PBM significantly improved the healing of CSFD in OVX rats, and affected the expression of OPG, OC, and RANKL genes.


Assuntos
Osteogênese , Células-Tronco , Adipócitos , Tecido Adiposo , Animais , Feminino , Humanos , Ovariectomia , Ratos
4.
Lasers Med Sci ; 37(3): 1593-1604, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34476655

RESUMO

Herein, we report the influence of administering different protocols of preconditioned diabetic adipose-derived mesenchymal stem cells (ADSs) with photobiomodulation in vitro, and photobiomodulation in vivo on the number of mast cells (MCs), their degranulation, and wound strength in the maturation step of a Methicillin-resistant Staphylococcus aureus (MRSA)-infectious wound model in rats with type one diabetes. An MRSA-infectious wound model was generated on diabetic animals, and they were arbitrarily assigned into five groups (G). G1 were control rats. In G2, diabetic ADS were engrafted into the wounds. In G3, diabetic ADS were engrafted into the wound, and the wound was exposed to photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) in vivo. In G4, preconditioned diabetic ADS with photobiomodulation (630 and 810 nm; each 3 times with 1.2 J/cm2) in vitro were engrafted into the wound. In G5, preconditioned diabetic ADS with photobiomodulation were engrafted into the wound, and the wound was exposed to photobiomodulation in vivo. The results showed that, the maximum force in all treatment groups was remarkably greater compared to the control group (all, p = 0.000). Maximum force in G4 and G5 were superior than that other treated groups (both p = 0.000). Moreover, G3, G4, and G5 showed remarkable decreases in completely released MC granules and total numbers of MC compared to G1 and G2 (all, p = 0.000). We concluded that diabetic rats in group 5 showed significantly better results in terms of accelerated wound healing and MC count of an ischemic infected delayed healing wound model.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , Animais , Terapia com Luz de Baixa Intensidade/métodos , Mastócitos , Ratos , Ratos Wistar , Células-Tronco
5.
J Lasers Med Sci ; 12: e41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733764

RESUMO

Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.

6.
Biochem Biophys Res Commun ; 530(1): 173-180, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828282

RESUMO

We investigated the impact of human demineralized bone matrix (hDBM) plus adipose-derived stem cells (hADS) plus photobiomodulation (PBM) on a critical-sized femoral defect (CSFD) in ovariectomy induced osteoporosis in rats. There were 6 groups as follows. In group 1 (control, C), only CSFDs were created. Groups 2-6 were implanted with DBM into the CSFD (DBM-CSFD). In group 2 (S), only DBM was transplanted into the CSFD. In group 3 (S + PBM), the DBM-CSFDs were treated with PBM. In group 4, the DBM-CSFDs were treated with alendronate (S + ALN). In group 5, ADSs were seeded into DBM-CSFD (S + ADS). In group 6, ADSs were seeded into DBM-CSFD and the CSFDs were treated with PBM (S + PBM + ADS). At week eight (catabolic phase of bone repair), the S + ALN, S + PBM + ADS, S + PBM, and S + ADS groups all had significantly increased bone strength than the S group (ANOVA, p = 0.000). The S + PBM, S + PBM + ADS, and S + ADS groups had significantly increased Hounsfield unit than the S group (ANOVA, p = 0.000). ALN, ADS, and PBM significantly increased healed bone strength in an experimental model of DBM-treated CSFD in the catabolic phase of bone healing in osteoporotic rats. However, ALN alone and PBM plus ADS were superior to the other protocols.


Assuntos
Matriz Óssea/transplante , Terapia com Luz de Baixa Intensidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoporose/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fêmur/lesões , Fêmur/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoporose/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...