Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(35): e2301981, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186376

RESUMO

Poly-L-lactide (PLLA) offers a unique possibility for processing into biocompatible, biodegradable, and implantable piezoelectric structures. With such properties, PLLA has potential to be used as an advanced tool for mimicking biophysical processes that naturally occur during the self-repair of wounds and damaged tissues, including electrostimulated regeneration. The piezoelectricity of PLLA strongly depends on the possibility of controlling its crystallinity and molecular orientation. Here, it is shown that modifying PLLA with a small amount (1 wt%) of crystalline filler particles with a high aspect ratio, which act as nucleating agents during drawing-induced crystallization, promotes the formation of highly crystalline and oriented PLLA structures. This increases their piezoelectricity, and the filler-modified PLLA films provide a 20-fold larger voltage output than nonmodified PLLA during ultrasound (US)-assisted activation. With 99% PLLA content, the ability of the films to produce reactive oxygen species (ROS) and increase the local temperature during interactions with US is shown to be very low. US-assisted piezostimulation of adherent cells directly attach to their surface (such as skin keratinocytes), stimulate cytoskeleton formation, and as a result cells elongate and orient themselves in a specific direction that align with the direction of PLLA film drawing and PLLA dipole orientation.


Assuntos
Materiais Biocompatíveis , Poliésteres , Materiais Biocompatíveis/química , Poliésteres/química , Temperatura , Cristalização
2.
Commun Biol ; 5(1): 1234, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371541

RESUMO

Designing useful functionalities in clinically validated, old antibiotics holds promise to provide the most economical solution for the global lack of effective antibiotics, as undoubtedly a serious health threat. Here we show that using the surface chemistry of the cyclodextrin (ßCD) cycle and arginine (arg) as a linker, provides more stable ternary antibiotic complex (ßCD-arg-cpx). In contrast to classical less stable inclusion complexes, which only modify antibiotic solubility, here-presented ternary complex is more stable and controls drug release. The components of the complex intensify interactions with bacterial membranes and increase the drug's availability inside bacterial cells, thereby improving its antimicrobial efficacy and safety profile. Multifunctional antibiotics, formulated as drug delivery systems per se, that take the drug to the site of action, maximize its efficacy, and provide optical detectability are envisaged as the future in fighting against infections. Their role as a tool against multiresistant strains remains as interesting challenge open for further research.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Arginina/química , beta-Ciclodextrinas/química , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
3.
Biomater Adv ; 140: 213051, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914326

RESUMO

Functional calcium phosphate biomaterials can be designed as carriers of a balanced mixture of biologically relevant ions able to target critical processes in bone regeneration. They hold the potential to use mechanisms very similar to growth factors naturally produced during fracture healing, while circumventing some of their drawbacks. Here we present a novel phase of carbonated-apatite containing Mg2+, Sr2+, Zn2+ and Ga3+ ions (HApMgSrZnGa). While all dopants decrease the crystallinity, Ga3+ limits crystal growth and enables the formation of a nanosized apatite phase with enhanced specific surface area. Coexistence of the ions enhances degradability and controls solubility of low crystalline, distorted, multi-doped apatite structure, controlled by Ga3+ ions accumulated at the surface. Consequently, HApMgSrZnGa supports the viability of human mesenchymal stromal cells (MSCs) and induces their stimulation along the osteogenic lineage. In addition, the co-released ions has a synergistic antimicrobial effect, particularly within the HApMgSrZnGa-Au(arg) composite with Au(arg) as contact-based antimicrobial. The activity is stable up to two months in vitro. Osteogenic nature and antimicrobial activity, combined in a single biomaterial, are suggesting a well-balanced, multi-doped apatite design applicable as future option in bone regeneration and tissue engineering.


Assuntos
Gálio , Estrôncio , Apatitas , Materiais Biocompatíveis/farmacologia , Humanos , Íons , Magnésio/farmacologia , Estrôncio/farmacologia , Engenharia Tecidual , Zinco/farmacologia
4.
Biomater Sci ; 10(17): 4933-4948, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861487

RESUMO

Cell stimulation using piezoelectric polymers, which is known as piezostimulation, is an innovative approach for designing antimicrobial protection. As an antibiotic-free and inorganic nanoparticle-free approach, it uses physical stimuli to target bacterial cells in a non-specific manner, which may be of great importance, particularly in the context of avoiding resistant bacterial strains. In this study, we prepared fully organic piezoelectric biodegradable films composed of poly-L-lactide (PLLA) and demonstrated their antimicrobial effect on S. epidermidis as a model of Gram-positive and E. coli as a model of Gram-negative bacteria. The PLLA films were either smooth and fabricated using simple melt- drawing or nanotextured, as self-standing nanotubes formed using the template-assisted method. The morphological differences between nanotextured and smooth films resulted in a larger surface area and better surface contact in nanotextured films, together with improved structural properties and better crystallinity, which were the main reasons for their better piezoelectric properties, and consequently stronger bactericidal effect. The comparison between the nanotextured surfaces with and without piezoelectric nature excluded the main role of morphology and directly confirmed piezoelectricity as the main reason for the observed antimicrobial affect. We also confirmed that piezo-stimulation using the antibacterial nanotextured film could damage the bacterial membrane as the main mechanism of action, while the contribution of pH changes and ROS generation was negligible. More importantly, the effect was selective toward the bacterial membrane and the same damage was not observed in human red blood cells, making the therapeutic use of these films possible.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Humanos , Polímeros/química , Polímeros/farmacologia , Staphylococcus epidermidis
5.
Polymers (Basel) ; 13(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34074064

RESUMO

Biocompatible and biodegradable poly-l-lactic acid (PLLA) processed into piezoelectric structures has good potential for use in medical applications, particularly for promoting cellular growth during electrostimulation. Significant advantages like closer contacts between cells and films are predicted when their surfaces are modified to make them more hydrophilic. However, there is an open question about whether the surface modification will affect the degradation process and how the films will be changed as a result. For the first time, we demonstrate that improving the polymer surface's wettability affects the position of enzyme-driven degradation. Although it is generally considered that proteinase K degrades only the polymer surface, we observed the enzyme's ability to induce both surface and bulk degradation. In hydrophilic films, degradation occurs at the surface, inducing surface erosion, while for hydrophobic films, it is located inside the films, inducing bulk erosion. Accordingly, changes in the structural, morphological, mechanical, thermal and wetting properties of the film resulting from degradation vary, depending on the film's wettability. Most importantly, the degradation is gradual, so the mechanical and piezoelectric properties are retained during the degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...