Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e108500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250740

RESUMO

Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm(2) for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.


Assuntos
Anti-Infecciosos/uso terapêutico , Controle de Infecções/métodos , Fotoquimioterapia , Polímeros/administração & dosagem , Reservatórios de Doenças
2.
J Neurosci ; 33(3): 1198-210a, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325256

RESUMO

The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body's movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1-C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6-T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head's movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements.


Assuntos
Núcleos Cerebelares/fisiologia , Movimentos da Cabeça/fisiologia , Pescoço/fisiologia , Neurônios/fisiologia , Propriocepção/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Movimentos Oculares/fisiologia , Feminino , Movimento/fisiologia , Postura/fisiologia , Rotação , Saimiri , Canais Semicirculares/fisiologia
3.
J Physiol ; 546(Pt 1): 207-24, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12509489

RESUMO

The firing behaviour of vestibular nucleus neurons putatively involved in producing the vestibulo-ocular reflex (VOR) was studied during active and passive head movements in squirrel monkeys. Single unit recordings were obtained from 14 position-vestibular (PV) neurons, 30 position-vestibular-pause (PVP) neurons and 9 eye-head-vestibular (EHV) neurons. Neurons were sub-classified as type I or II based on whether they were excited or inhibited during ipsilateral head rotation. Different classes of cell exhibited distinctive responses during active head movements produced during and after gaze saccades. Type I PV cells were nearly as sensitive to active head movements as they were to passive head movements during saccades. Type II PV neurons were insensitive to active head movements both during and after gaze saccades. PVP and EHV neurons were insensitive to active head movements during saccadic gaze shifts, and exhibited asymmetric sensitivity to active head movements following the gaze shift. PVP neurons were less sensitive to on-direction head movements during the VOR after gaze saccades, while EHV neurons exhibited an enhanced sensitivity to head movements in their on direction. Vestibular signals related to the passive head movement were faithfully encoded by vestibular nucleus neurons. We conclude that central VOR pathway neurons are differentially sensitive to active and passive head movements both during and after gaze saccades due primarily to an input related to head movement motor commands. The convergence of motor and sensory reafferent inputs on VOR pathways provides a mechanism for separate control of eye and head movements during and after saccadic gaze shifts.


Assuntos
Fixação Ocular/fisiologia , Cabeça/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos/fisiologia , Saimiri/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Movimentos Oculares/fisiologia , Macaca mulatta , Movimento (Física) , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...