Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124620, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865889

RESUMO

Developing timely, convenient, and low-cost methods for high-frequency characterization of soil nutrients is necessary for implementing precise soil nutrient management. With the current availability of numerous calibration models of laboratory benchtop near-infrared (NIR) spectrometers for rapid soil nutrient characterization and the appearance of low-cost, convenient miniaturized NIR spectrometers, this study proposes an efficient deployment strategy to address model failure due to inter-device variation based on spectral transfer. The strategy involves using Direct Standardization (DS) to migrate the spectra from multiple miniaturized NIR spectrometers with a laboratory benchtop NIR spectrometer and then directly applying the existing calibration models of the laboratory benchtop instrument to the transferred spectra for soil nutrient analysis. The results indicated that the DS method successfully transferred the spectra of miniaturized devices to be consistent with the spectra of the laboratory benchtop instrument. The soil organic matter (SOM) predictions using the transferred spectra and the calibration models of the laboratory benchtop instrument were even more accurate than those using the respective models developed for each miniaturized devices, with root mean square error (RMSE) of 0.177 %, 0.177 %, and 0.150 %, respectively, while the performances of total nitrogen (TN) predictions were comparable to those using the respective models, with RMSE of 0.013 %, 0.012 %, and 0.010 %, respectively. Bland-Altman plots demonstrated good consistency between the strategy proposed in this study and the strategy of developing respective models for each miniaturized device, with no difference in predictions for the independent validation set compared to the laboratory benchtop instrument. This study proved the feasibility of deployment strategy of multiple miniaturized NIR spectrometers based on spectral transfer, offering a new solution for high-frequency on-site soil nutrient characterization.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124536, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815312

RESUMO

Antibiotic mycelia residues (AMRs) contain antibiotic residues. If AMRs are ingested in excess by livestock, it may cause health problems. To address the current problem of unknown pixel-scale adulteration concentration in NIR-HSI, this paper innovatively proposes a new spectral simulation method for the evaluation of AMRs in protein feeds. Four common protein feeds (soybean meal (SM), distillers dried grains with solubles (DDGS), cottonseed meal (CM), and nucleotide residue (NR)) and oxytetracycline residue (OR) were selected as study materials. The first step of the method is to simulate the spectra of pixels with different adulteration concentrations using a linear mixing model (LMM). Then, a pixel-scale OR quantitative model was developed based on the simulated pixel spectra combined with local PLS based on global PLS scores (LPLS-S) (which solves the problem of nonlinear distribution of the prediction results due to the 0%-100% content of the correction set). Finally, the model was used to quantitatively predict the OR content of each pixel in hyperspectral image. The average value of each pixel was calculated as the OR content of that sample. The implementation of this method can effectively overcome the inability of PLS-DA to achieve qualitative identification of OR in 2%-20% adulterated samples. In compared to the PLS model built by averaging the spectra over the region of interest, this method utilizes the precise information of each pixel, thereby enhancing the accuracy of the detection of adulterated samples. The results demonstrate that the combination of the method of simulated spectroscopy and LPLS-S provides a novel method for the detection and analysis of illegal feed additives by NIR-HSI.


Assuntos
Ração Animal , Antibacterianos , Micélio , Espectroscopia de Luz Próxima ao Infravermelho , Antibacterianos/análise , Ração Animal/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Micélio/química , Imageamento Hiperespectral/métodos , Resíduos de Drogas/análise , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...