Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 111(1): 8, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354238

RESUMO

All pesticides are toxic by nature and pose short- or long-term safety risks to human or the environment, especially when they were used extensively and absence of safety measures. As a new insecticidal active compound with a novel mechanism of action, there is a serious inadequate of information on the hydrolytic behavior of broflanilide in the aqueous environment, as well as its degradation pattern in agricultural soils. In particular, the effects of temperature and pH of the aqueous environment on its hydrolytic behaviors and the dissipation pattern in different types of agricultural soils were still in a dark box. And the further understanding and insights into this insecticidal active ingredient were being deeply conditioned by these doubts. The hydrolysis behavior of broflanilide and the dissipation pattern in soil were systematically investigated by constructing hydrolysis systems with different temperatures and pH values, and conducting spiking experiments in different types of agricultural soil in the laboratory. The obtained results showed that the longest hydrolysis half-life of 10 mg/L broflanilide at 25 °C was 43.32 h (in pH 4.0 buffer), while it was only 12.84 h in pH 9.0 buffer. In pH 7.0 buffer, the hydrolysis rate of broflanilide exhibited a significant temperature dependence, as shown by the fact that for every 10 °C increase in the system temperature, the corresponding hydrolysis rate will increase about 1.5 times. The dissipation experiments in soils showed that broflanilide was most rapidly dissipated in fluvo-aquic soil (half-life of 1.94 days), followed by lime concretion black soil (half-life of 2.53 days) and cinnamon soil (half-life of 3.11 days), and slower in paddy soil (half-life of 4.03 days). It was indicated that broflanilide was a readily degradable pesticide in both aqueous environment and agricultural soil, and it was significantly affected by the temperature and pH of the system.


Assuntos
Inseticidas , Praguicidas , Poluentes do Solo , Humanos , Solo/química , Hidrólise , Agricultura , Água , Poluentes do Solo/análise
2.
Adv Mater ; 34(39): e2203283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972840

RESUMO

Room-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response. Here, a fully depleted self-aligned MoS2 -BP-MoS2 vdW heterostructure sandwiched between two electrodes is reported. This new type of photodetector exhibits competitive performance, including a high blackbody peak photoresponsivity up to 0.77 A W-1 and low noise-equivalent power of 2.0 × 10-14  W Hz-1/2 , in the MWIR region. A peak specific detectivity of 8.61 × 1010  cm Hz1/2  W-1 under blackbody radiation is achieved at room temperature in the MWIR region. Importantly, the effective detection range of the device is twice that of state-of-the-art MWIR photodetectors. Furthermore, the device presents an ultrafast response of ≈4 µs both in the visible and short-wavelength infrared bands. These results provide an ideal platform for realizing broadband and highly sensitive room-temperature MWIR photodetectors.

3.
Sci Adv ; 8(30): eabq1781, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905192

RESUMO

Two-dimensional (2D) infrared photodetectors always suffer from low quantum efficiency (QE) because of the limited atomically thin absorption. Here, we reported 2D black phosphorus (BP)/Bi2O2Se van der Waals (vdW) photodetectors with momentum-matching and band-alignment heterostructures to achieve high QE. The QE was largely improved by optimizing the generation, suppressing the recombination, and improving the collection of photocarriers. Note that momentum-matching BP/Bi2O2Se heterostructures in k-space lead to the highly efficient generation and transition of photocarriers. The recombination process can be largely suppressed by lattice mismatching-immune vdW interfaces. Furthermore, type II BP/Bi2O2Se vdW heterostructures could also assist fast transport and collection of photocarriers. By constructing momentum-matching and band-alignment heterostructures, a record-high QE of 84% at 1.3 micrometers and 76.5% at 2 micrometers have been achieved in BP/Bi2O2Se vdW photodetectors.

4.
Light Sci Appl ; 11(1): 6, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974520

RESUMO

With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of ~0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W-1 at 3.5 µm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.

5.
Opt Express ; 29(15): 22823-22837, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614561

RESUMO

With the development of infrared optoelectronic technology, high responsivity, ultra-low dark current, and high response speed have become important factors of the next generation of infrared photodiodes. However, the minimum thickness of the absorber layer is limited to approximately one or several wavelength lengths to acquire high quantum efficiency, which results in a long transit time of photogenerated carriers. In this work, we propose a photon-trapping structure that uses the skin effect of metals to generate horizontal local modes to enhance the absorption of infrared photodiodes. The photon-trapping structure consists of an artificial grating structure covered by a metallic film. Importantly, we develop a simplified theoretical model to describe the local mode, which is then being used to design the realistic photon-trapping structure presented in this work. This design method is universal and we discuss the optical properties of the photon-trapping structure in InAs, InSb, InAs/GaSb type-II superlattices, InAs/InAsSb type-II superlattices, and HgCdTe infrared photodiodes. Both absorption of optical properties and responsivity of optoelectrical properties are numerically investigated in a systematic way. The optical simulations indicate that the absorption of the HgCdTe infrared photodiodes exceeds 80% at 8.5 ∼ 11 µm with a maximum value of 95% at 9.73 µm. The optoelectrical simulations show that the responsivity at 7 ∼ 10 µm is significantly enhanced compared to that of the plain HgCdTe infrared photodiodes without the photon-trapping structure. We further investigate the optical crosstalk in the HgCdTe pixel array employing the photon-trapping structure. The optical crosstalk significantly reduces as the pixel spacing increases. Our work provides a design method for developing small pixel, large scale, and low dark current focal plane array infrared photodiodes.

6.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863732

RESUMO

Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W-1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W-1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition-grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.

7.
Adv Mater ; 32(45): e2005037, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32985021

RESUMO

Low-symmetry 2D materials with unique anisotropic optical and optoelectronic characteristics have attracted a lot of interest in fundamental research and manufacturing of novel optoelectronic devices. Exploring new and low-symmetry narrow-bandgap 2D materials will be rewarding for the development of nanoelectronics and nano-optoelectronics. Herein, sulfide niobium (NbS3 ), a novel transition metal trichalcogenide semiconductor with low-symmetry structure, is introduced into a narrowband 2D material with strong anisotropic physical properties both experimentally and theoretically. The indirect bandgap of NbS3 with highly anisotropic band structures slowly decreases from 0.42 eV (monolayer) to 0.26 eV (bulk). Moreover, NbS3 Schottky photodetectors have excellent photoelectric performance, which enables fast photoresponse (11.6 µs), low specific noise current (4.6 × 10-25 A2 Hz-1 ), photoelectrical dichroic ratio (1.84) and high-quality reflective polarization imaging (637 nm and 830 nm). A room-temperature specific detectivity exceeding 107 Jones can be obtained at the wavelength of 3 µm. These excellent unique characteristics will make low-symmetry narrow-bandgap 2D materials become highly competitive candidates for future anisotropic optical investigations and mid-infrared optoelectronic applications.

8.
J Am Chem Soc ; 138(24): 7705-10, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27243114

RESUMO

A tetra-coordinate, square planar germanium(IV) cation [(TPFC)Ge](+) (TPFC = tris(pentafluorophenyl)corrole) was synthesized quantitatively by the reaction of (TPFC)Ge-H with [Ph3C](+)[B(C6F5)4](¯). The highly reactive [(TPFC)Ge](+) cation reacted with benzene to form phenyl complex (TPFC)Ge-C6H5 through an electrophilic pathway. The key intermediate, a σ-type germylium-benzene adduct, [(TPFC)Ge(η(1)-C6H6)](+), was isolated and characterized by single-crystal X-ray diffraction. Deprotonation of [(TPFC)Ge(η(1)-C6H6)](+) cation led to the formation of (TPFC)Ge-C6H5. [(TPFC)Ge](+) also reacted with ethylene and cyclopropane in benzene at room temperature to form (TPFC)Ge-CH2CH2C6H5 and (TPFC)Ge-CH2CH2CH2C6H5, respectively. The observed electrophilic reactivity is ascribed to the highly exposed cationic germanium center with novel frontier orbitals comprising two vacant sp-hybridized orbitals that are not conjugated to π-system. The three electron-withdrawing pentafluorophenyl groups on the corrole ligand also enhance the electrophilicity of the cationic germanium corrole.

9.
J Am Chem Soc ; 137(22): 7122-7, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25985282

RESUMO

(TPFC)Ge(TEMPO) (1, TPFC = tris(pentafluorophenyl)corrole, TEMPO(•) = (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) shows high reactivity toward E-H (E = N, O) bond cleavage in R1R2NH (R1R2 = HH, (n)PrH, (i)Pr2, Et2, PhH) and ROH (R = H, CH3) under visible light irradiation. Electron paramagnetic resonance (EPR) analyses together with the density functional theory (DFT) calculations reveal the E-H bond activation by [(TPFC)Ge](0)(2)/TEMPO(•) radical pair, generated by photocleavage of the labile Ge-O bond in compound 1, involving two sequential steps: (i) coordination of substrates to [(TPFC)Ge](0) and (ii) E-H bond cleavage induced by TEMPO(•) through proton coupled electron transfer (PCET).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...