Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 39030-39038, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017992

RESUMO

A narrow linewidth and wideband tunable continuous-wave terahertz generator with DAST crystal has been demonstrated in this paper. Two narrow-linewidth CW fiber lasers were used as the pump sources for difference frequency generation. The terahertz wave can be continuously tunable in the range of 1.1-3 THz. The maximum output power of 2.79nW was obtained at 2.568 THz. The linewidth of the output THz wave was estimated to be 56.5 MHz by fitting transmission spectrum of CO gas at 450 Pa pressure around 80.52 cm-1 with the Vogit gas model. Furthermore, the output spectra at room temperature and pressure was in good agreement with the air absorption lines in Hitran database. Moreover, the narrower absorption characteristic spectrum of 2-Deoxy-D-Glucose sample has been obtained through the spectrum measurements. Therefore, it could promote the practical prospect of tunable CW-THz source, which will have good potential in THz high-precision spectroscopic detection and multispectral imaging.

2.
Biomed Opt Express ; 14(7): 3622-3634, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497497

RESUMO

The diagnosis of blast-induced traumatic brain injury (bTBI) is of paramount importance for early care and clinical therapy. Therefore, the rapid diagnosis of bTBI is vital to the treatment and prognosis in clinic. In this paper, we reported a new strategy for label-free bTBI diagnosis through serum-based Raman spectroscopy. The Raman spectral characteristics of serum in rat were investigated at 3 h, 24 h, 48 h and 72 h after mild and moderate bTBIs. It has been demonstrated that both the position and intensity of Raman characteristic peaks exhibited apparent differences in the range of 800-3000cm-1 compared with control group. It could be inferred that the content, structure and interaction of biomolecules in the serum were changed after blast exposure, which might help to understand the neurological syndromes caused by bTBI. Furthermore, the control group, mild and moderate bTBIs at different times (a total of 9 groups) were automatically classified by combining principal component analysis and four machine learning algorithms (quadratic discriminant analysis, support vector machine, k-nearest neighbor, neural network). The highest classification accuracy, sensitivity and precision were up to 95.4%, 95.9% and 95.7%. It is suggested that this method has great potential for high-sensitive, rapid, and label-free diagnosis of bTBI.

3.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684674

RESUMO

The pharmaceutical co-crystal has attracted increasing interest due to the improvement of physicochemical properties of active pharmaceutical ingredients. The characterization of pharmaceutical co-crystal is an integral part of the pharmaceutical field. In this paper, the low-frequency vibrational properties for carbamazepine co-crystals with nicotinamide and saccharin (CBZ-NIC and CBZ-SAC) have been characterized by combining the THz spectroscopy with low-wavenumber Raman spectroscopy. The experiment results show that, compared with the individual constituents, CBZ-NIC and CBZ-SAC co-crystals not only have different characteristic absorption peaks in the 0.3-2.5 THz region, but also have significant low-wavenumber Raman characteristic peaks in 0-100 cm-1. Density functional theory was performed to simulate the terahertz and low-wavenumber Raman spectra of the two co-crystals, where the calculation agreed well with the measured vibrational peak positions. The vibrational modes of CBZ-NIC and CBZ-SAC co-crystals were assigned through comparing theoretical results with the experimental spectra. Meanwhile, the low-frequency infrared and/or Raman active of characteristic peaks for such co-crystals were discussed. The results indicate the combination of THz spectroscopy and low-wavenumber Raman spectroscopy can provide more comprehensive low-frequency vibrational information for pharmaceutical co-crystals, such as collective vibration and skeleton vibration, which could play an important role in pharmaceutical science.


Assuntos
Sacarina , Vibração , Carbamazepina/química , Cristalização/métodos , Niacinamida/química , Análise Espectral Raman/métodos
4.
Biomed Opt Express ; 13(1): 93-104, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154856

RESUMO

Terahertz (THz) spectroscopy and imaging were used to differentiate brain gliomas in a mouse model at different temperatures. The THz spectral difference between brain glioma and normal brain tissues at -10°C and 20°C was obtained in the 0.4-2.53 THz range. The absorption coefficient and refractive index values varied with both temperature and frequency. The fresh ex vivo brain glioma tissues were mapped by THz attenuated total reflection (ATR) imaging at 2.52 THz in the temperature range from -20°C to 35°C. Compared with histological examination, THz-ATR imaging could better display the tumor areas at a higher temperature. And the averaged reflectivity of normal tissue was increased with the increase of temperature, whereas the tumor region showed a decreasing trend. Thus, the larger THz imaging difference between glioma and normal tissues could be obtained. Moreover, in vivo brain gliomas in mouse models could also be differentiated clearly from normal brain tissues using THz-ATR imaging at 2.52 THz under room temperature. The THz-ATR images corresponded well with those of visual and hematoxylin and eosin (H&E) stained images. Therefore, this pilot study demonstrated that temperature dependence THz spectroscopy and imaging are helpful to the brain gliomas in mouse model detection.

5.
J Biophotonics ; 15(1): e202100245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553838

RESUMO

Continuous-wave terahertz reflection imaging is a potential tool for biological tissues. Based on our home-made continuous-wave terahertz reflection imaging system, the effect of both polarization mode and reflection window on the imaging performance is studied theoretically and experimentally, showing good agreement. By taking obtaining sample information and image contrast into consideration, p-polarized terahertz waves are recommended. Moreover, considering the sample boundary identification and the image contrast, selection criteria for reflection window are proposed. This work will help to improve the performance of continuous-wave terahertz reflection imaging and accelerate the THz imaging in biological application.


Assuntos
Imagem Terahertz
6.
Biomed Opt Express ; 11(8): 4085-4098, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923030

RESUMO

The early diagnosis of blast-induced traumatic brain injury (bTBI) is of great clinical significance for prognostication and treatment. Here, we report a new strategy for early bTBI diagnosis through serum and cerebrospinal fluid (CSF) based on terahertz time-domain spectroscopy (THz-TDS). The spectral differences of serum and CSF for different degrees of experimental bTBI in rats have been demonstrated in the early period. In addition, the THz spectra of total protein in the hypothalamus and hippocampus were investigated at different time points after blast exposure, which both showed clear differences with time increasing compared with that in the normal brain. This might help to explain the neurological symptoms caused by bTBI. Moreover, based on the THz absorption spectra of serum and CSF, the principal component analysis and machine learning algorithms were performed to automatically identify the degree of bTBI. The highest diagnostic accuracy was up to 95.5%. It is suggested that this method has potential as an alternative method for high-sensitive, rapid, label-free, economical and early diagnosis of bTBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...