Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 120: 111243, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830562

RESUMO

Studies have shown that the abnormal expression of circular RNA (circRNA) is inextricably linked to hepatocellular carcinoma (HCC). Recently, hsa_circ_0000518 (circ_0000518) was discovered in many cancer progressions. However, its function in HCC is still unclear. Through GEO database analysis combined with gene expression detection of HCC related clinical samples and cell lines, we identified that circ_0000518 was abnormally overexpressed in HCC. Cell and animal model experiments jointly indicated that circ_0000518 can stimulate HCC cell proliferation, migration, invasion and suppress apoptosis. Furthermore, we also found that knocking down the circ_0000518 could inhibit the Warburg effect in HCC cells. Mechanistically, circ_0000518 was found to be primarily localized in the cytoplasm, and sponge hsa-miR-326 (miR-326) promoted integrin alpha 5 (ITGA5) expression. In addition, circ_0000518 could enhance the stability of HuR-mediated ITGA5 mRNA, thereby activating the Warburg effect. In conclusion, this study elucidated that circ_0000518 was a cancer-promoting circRNA, which could enhance ITGA5 expression through competing endogenous RNAs (ceRNA) and RNA Binding Protein (RBP) mechanisms, thus facilitating the development of HCC. It provides a meaningful diagnostic and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , MicroRNAs , RNA Circular , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Efeito Warburg em Oncologia , Integrina alfa5/metabolismo , Integrina alfa5/genética , Movimento Celular , Camundongos Nus , Camundongos , Apoptose , Progressão da Doença , Camundongos Endogâmicos BALB C , Masculino , Integrinas
2.
Immunopharmacol Immunotoxicol ; 46(1): 40-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37671837

RESUMO

OBJECTIVE: This study aimed to investigate the underlying molecular mechanisms of Withaferin A (WA) in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: The gene and protein expression were analyzed using RT-qPCR and western blot, respectively. The proliferation of HCC cells was evaluated by CCK-8 assays. The migrative ability of HCC cells was measured by transwell assays. RESULTS: We revealed that WA suppressed the proliferation and migration of HCC cells and inhibited IGF2BP3 (insulin like growth factor 2 mRNA binding protein 3) expression. IGF2BP3 abundance reversed the reactive oxygen species (ROS) accumulation and suppression of HCC cell proliferation and migration induced by WA. Besides, IGF2BP3 suppressed ROS production to promote the growth and migration of HCC cells. Furthermore, we found that IGF2BP3 exerted its tumor-promotive and ROS-suppressive effect on HCC cells by regulating the expression of FOXO1 (forkhead box O1). In addition, IGF2BP3-stimulated activation of JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) phosphorylation effectively decreased the transcription of FOXO1. FOXO1 abundance decreased the phosphorylation of JAK2 and STAT3 by increasing ROS level, forming a feedback loop for the inhibition of JAK2/STAT3 signaling activated by IGF2BP3. CONCLUSIONS: WA-induced ROS inhibited HCC cell growth and migration through the inhibition of IGF2BP3 to deactivate JAK2/STAT3 signaling, resulting in increased FOXO1 expression to further stimulate ROS production and inhibit JAK2/STAT3 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vitanolídeos , Humanos , Carcinoma Hepatocelular/patologia , Janus Quinase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/patologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
3.
J Bioenerg Biomembr ; 54(5-6): 283-291, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307669

RESUMO

Pancreatic adenocarcinoma (PAAD) is the third leading cause of cancer-related deaths, with a 5-year relative survival rate of 6%. Hence, novel therapeutic targets need to be urgently explored for PAAD. Recently, oxidative phosphorylation (OXPHOS) has been identified to contribute to the development of PAAD. Nicotinamide adenine dinucleotide + hydrogen (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4) is known to affect the mitochondrial respiration pathway. However, the function of NDUFA4 in PAAD remains unclear. In this study, NDUFA4 expression was examined in samples from patients with PAAD using real-time polymerase chain reaction and immunohistochemical staining. Furthermore, cell proliferation and cell cycle were analyzed using Cell Counting Kit-8 assay and flow cytometry. A xenograft tumor model derived from a PAAD cell line was developed to validate the in vitro findings. NDUFA4 was observed to be upregulated in the PAAD samples, and high levels were associated with a poor survival rate. NDUFA4 knockdown reduced cell proliferation by inducing G1 arrest in SW1990 cells. Mechanistically, NDUFA4 knockdown decreased the oxygen consumption rate, cellular adenosine triphosphate level, mitochondrial complex IV activity, and protein levels of COX6C and COX5B, which indicated the suppression of OXPHOS. In contrast, NDUFA4 overexpression exerted the opposite effects. Finally, NDUFA4 knockdown significantly inhibited the growth of the xenograft tumor derived from the SW1990 cell line in vivo. Therefore, NDUFA4 contributes to PAAD proliferation by enhancing OXPHOS.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/metabolismo , Fosforilação Oxidativa , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Complexo IV da Cadeia de Transporte de Elétrons , Neoplasias Pancreáticas
4.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080600

RESUMO

The curing kinetics of MDI-based polyurethane elastomers were studied by non-isothermal differential scanning calorimetry (DSC). The kinetic parameters of the reaction system were calculated by the Kissinger method. The changing activation energy was observed by the Flynn−Wall−Ozawa method and the Friedman method. The results of model free fitting showed that the curing reaction could be divided into two stages, showing a change in reaction order when α > 0.45 and a piecewise curing mechanism function of the MDI-based polyurethane elastomers reaction system was deduced by autocatalytic model. The extrapolation method was used to determine the optimum curing conditions for the system, which can accurately describe the curing process. In addition, the optimal curing conditions are when: the constant temperature curing temperature of the system is 81 °C, the curing time is 29 min, and the post-curing temperature is 203 °C.

5.
Anal Chim Acta ; 1072: 35-45, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31146863

RESUMO

From a safety perspective, it is vital to have fast responding gas sensors for toxic and explosive gases in the event of a gas leak. Amperometric gas sensors have been developed for such a purpose, but their response times are often relatively slow - on the order of 50 seconds or more. In this work, we have developed sensors for hydrogen gas that demonstrate ultra-fast response times. The sensor consists of an array of gold microchannel electrodes, electrodeposited with platinum nanoparticles (PtNPs) to enable hydrogen electroactivity. Very thin layers (∼9 µm) of room temperature ionic liquids (RTILs) result in an extremely fast response time of only 2 s, significantly faster than the other conventional electrodes examined (unmodified Pt electrode, and PtNP modified Au electrode). The RTIL layer in the microchannels is much thinner than the channel length, showing an interesting yet complex diffusion pattern and characteristic thin-layer behavior. At short times (e.g. on the timescale of cyclic voltammetry), the oxidation current is smaller and steady-state in nature, compared to macrodisk electrodes. At longer times (e.g. using long-term chronoamperometry), the diffusion layer is large for all surfaces and extends to the liquid/gas phase boundary, where the gas is continuously replenished from the flowing gas stream. Thus, the current response is the largest on the microchannel electrode, resulting in the highest sensitivity and lowest limit of detection for hydrogen. These microchannel electrodes appear to be highly promising surfaces for the ultrafast detection of hydrogen gas, particularly at relevant concentrations close to, or below, the lower explosive limit of 4 vol-% H2.

6.
Nat Commun ; 5: 3744, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24781644

RESUMO

Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.


Assuntos
Líquidos Iônicos , Dispositivos Lab-On-A-Chip , Análise em Microsséries/métodos , Impressão/métodos , Microfluídica/métodos , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...