Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198676

RESUMO

Anomalous diffusion phenomena have been widely found in systems within an inhomogeneous complex environment. For Lévy walk in an inhomogeneous complex environment, we characterize the particle's trajectory through an underdamped Langevin system coupled with a subordinator. The influence of the inhomogeneous environment on the particle's motion is parameterized by the random system parameters, relaxation timescale τ, and velocity diffusivity σ. We find that the two random parameters make different effects on the original superdiffusion behavior of the Lévy walk. The random σ contributes to a trivial result after an ensemble average, which is independent of the specific distribution of σ. By contrast, we find that a specific distribution of τ, a modified Lévy distribution with a finite mean, slows down the decaying rate of the velocity correlation function with respect to the lag time. However, the random τ does not promote the diffusion behavior in a direct way, but plays a competition role to the superdiffusion of the original Lévy walk. In addition, the effect of the random τ is also related to the specific subordinator in the coupled Langevin model, which corresponds to the distribution of the flight time of the Lévy walk. The random system parameters are capable of leading to novel dynamics, which needs detailed analyses, rather than an intuitive judgment, especially in complex systems.

2.
Phys Chem Chem Phys ; 25(46): 31974-31982, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37975325

RESUMO

The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm-3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.

3.
Plant Sci ; 321: 111330, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696929

RESUMO

Leaf senescence and abscission play crucial role in annual plant adapting to seasonal alteration and climate changes by shortening life cycle and development process in response to abiotic and/or biotic stressors underlying phytohormones and environmental signals. Ethylene and abscisic acid are the major phytohormones that promotes leaf senescence, involving various transcription factors, such as EIN3 (ethylene-insensitive 3) and EIL (ethylene-insensitive 3-like) gene family, controlling leaf senescence through metabolite biosynthesis and signal transduction pathways. However, the roles of EIN3 regulating leaf senescence responding to environmental changes in perennial plant, especially forestry tree, remain unclear. In this study, we found that BpEIN3.1 from a subordinated to EIL3 subclade, is a transcription repressor and regulated light-dependent premature leaf senescence in birch (Betula platyphylla). BpEIN3.1 might inhibits the transcription of BpATPS1 by binding to its promoter. Shading suppressed premature leaf senescence in birch ein3.1 mutant line. Ethylene and abscisic acid biosynthesis were also reduced. In addition, abscisic acid positively regulated the expression of BpEIN3.1. This was demonstrated by the hormone-response element analysis of BpEIN3.1 promoter and its gene expression after the hormone treatments. Moreover, our results showed that abscisic acid is also involved in maintaining homeostasis. The molecular mechanism of leaf senescence provides a possibility to increasing wood production by delaying of leaf senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Betula/genética , Betula/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Sci Total Environ ; 788: 147775, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029814

RESUMO

Overexploitation of water resources has led to severe ecological degradation and even desertification in some arid inland river basins, northwestern China. To alleviate or restore the degraded vegetation ecosystem, ecological water conveyance (EWC) has become an important and effective measure. Scientific assessment of the impact of EWC on vegetation restoration and determination of the corresponding optimal EWC volume (EWCV) are important to formulate rational ecological water management. In this study, long time series normalized difference vegetation index (NDVI) was used to extract the restored vegetation area in Qingtu Lake area, a terminal lake in inland Shiyang River basin, northwestern China. The relationship between restored vegetation coverage and EWC was explored to determine the optimal EWCV. The restored vegetation area (RVA) increased dramatically in the first five years and became stable from 2016. The time lag of the response of RVA increase to EWC was about 2 years. A bell-shaped function between RVA and groundwater depth was obtained based on the results from Unmanned Aerial Vehicle (UAV) and micro terrain of the lake area. Based on the fitted function, five groundwater depth thresholds were obtained. The optimal groundwater depth in the hydrometric station was 2.91 ± 0.09 m for the maximal RVA (17.08 ± 3.25 km2). A polynomial function between the yearly EWCV and groundwater depth was developed and the EWCV thresholds corresponding to the groundwater depth thresholds were estimated. The optimal EWCV into Qingtu Lake was 2224.4 × 104 m3 for the maximal RVA. The correspondingly optimal EWCV from Hongyashan Reservoir was 3271.4 × 104 m3. The spatial distribution patterns of remotely sensed water surface and NDVI suggested that expanding the water-receiving area of conveyed water was useful to improve the vegetation growth. This study provides a reference for assessing the impact of EWC on vegetation restoration and determining the correspondingly optimal EWCV in arid inland river basins.

5.
IET Syst Biol ; 12(4): 177-184, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33451180

RESUMO

An improved Hindmarsh-Rose (HR) neuron model, where the memristor is a bridge between membrane potential and magnetic flux, can be used to investigate the effect of periodic signals on autaptic regulation of neurons under electromagnetic radiation. Based on the improved HR model driven by periodic high-low-frequency current and electromagnetic radiation, the responses of electrical autaptic regulation with diverse high-low-frequency signals are investigated using bifurcation analysis. It is found that the electrical modes of neurons are determined by the selecting parameters of both periodic high and low-frequency current and electromagnetic radiation, and the Hamiltonian energy depends on the neuronal firing modes. The effects of Gaussian white noise on the membrane potential are discussed using numerical simulations. It is demonstrated that external high-low-frequency stimulus plays a significant role in the autaptic regulation of neural firing mode, and the electrical mode of neurons can be affected by the angular frequency of both high-low-frequency forcing current and electromagnetic radiation. The mechanism of neuronal firing regulated by high-low-frequency signal and electromagnetic radiation discussed here could be applied to research neuronal networks and synchronisation modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...