Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4663, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821932

RESUMO

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ligação Proteica , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Feminino
2.
J Cell Biol ; 220(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749710

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.


Assuntos
Neurônios/metabolismo , Doença de Parkinson , Transdução de Sinais , Biologia Celular , Morte Celular/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Mol Neurodegener ; 15(1): 20, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169097

RESUMO

That certain cell types in the central nervous system are more likely to undergo neurodegeneration in Parkinson's disease is a widely appreciated but poorly understood phenomenon. Many vulnerable subpopulations, including dopamine neurons in the substantia nigra pars compacta, have a shared phenotype of large, widely distributed axonal networks, dense synaptic connections, and high basal levels of neural activity. These features come at substantial bioenergetic cost, suggesting that these neurons experience a high degree of mitochondrial stress. In such a context, mechanisms of mitochondrial quality control play an especially important role in maintaining neuronal survival. In this review, we focus on understanding the unique challenges faced by the mitochondria in neurons vulnerable to neurodegeneration in Parkinson's and summarize evidence that mitochondrial dysfunction contributes to disease pathogenesis and to cell death in these subpopulations. We then review mechanisms of mitochondrial quality control mediated by activation of PINK1 and Parkin, two genes that carry mutations associated with autosomal recessive Parkinson's disease. We conclude by pinpointing critical gaps in our knowledge of PINK1 and Parkin function, and propose that understanding the connection between the mechanisms of sporadic Parkinson's and defects in mitochondrial quality control will lead us to greater insights into the question of selective vulnerability.


Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
4.
Brain ; 142(8): 2380-2401, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237944

RESUMO

α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson's disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson's disease, there is evidence that parkin is inactivated in sporadic Parkinson's disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson's disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson's disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson's disease and related α-synucleinopathies.


Assuntos
Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/patologia
5.
J Parkinsons Dis ; 7(4): 589-601, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29103051

RESUMO

Although the etiology of Parkinson's disease (PD) is poorly understood, oxidative stress has long been implicated in the pathogenesis of the disease. However, multifaceted and divergent signaling cascades downstream of oxidative stress have posed challenges for researchers to identify a central component of the oxidative stress-induced pathways causing neurodegeneration in PD. Since 2010, c-Abl-a non-receptor tyrosine kinase and an indicator of oxidative stress-has shown remarkable potential as a future promising drug target in PD therapeutics. Although, the constitutively active form of c-Abl, Bcr-Abl, has a long history in chronic myeloid leukemia and acute lymphocytic leukemia, the role of c-Abl in PD and relevant neurodegenerative diseases was completely unknown. Recently, others and we have identified and validated c-Abl as an important pathogenic mediator of the disease, where activated c-Abl emerges as a common link to various PD-related inducers of oxidative stress relevant to both sporadic and familial forms of PD and α-synucleinopathies. This review discusses the role of c-Abl in PD and the latest advancement on c-Abl as a drug target and as a prospective biomarker.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Envelhecimento , Animais , Humanos , Mesilato de Imatinib/uso terapêutico , Estresse Oxidativo/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , alfa-Sinucleína/metabolismo
6.
Science ; 353(6307)2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27708076

RESUMO

Emerging evidence indicates that the pathogenesis of Parkinson's disease (PD) may be due to cell-to-cell transmission of misfolded preformed fibrils (PFF) of α-synuclein (α-syn). The mechanism by which α-syn PFF spreads from neuron to neuron is not known. Here, we show that LAG3 (lymphocyte-activation gene 3) binds α-syn PFF with high affinity (dissociation constant = 77 nanomolar), whereas the α-syn monomer exhibited minimal binding. α-Syn-biotin PFF binding to LAG3 initiated α-syn PFF endocytosis, transmission, and toxicity. Lack of LAG3 substantially delayed α-syn PFF-induced loss of dopamine neurons, as well as biochemical and behavioral deficits in vivo. The identification of LAG3 as a receptor that binds α-syn PFF provides a target for developing therapeutics designed to slow the progression of PD and related α-synucleinopathies.


Assuntos
Antígenos CD/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Endocitose , Humanos , Camundongos , Camundongos Transgênicos , Ligação Proteica , Transporte Proteico , alfa-Sinucleína/genética , Proteína do Gene 3 de Ativação de Linfócitos
7.
J Clin Invest ; 126(8): 2970-88, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27348587

RESUMO

Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein-induced neuropathology. In mice expressing a human α-synucleinopathy-associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein-induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Células HEK293 , Humanos , Corpos de Lewy/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neuritos/metabolismo , Neuroproteção , Doença de Parkinson/genética , Fosforilação , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , alfa-Sinucleína/genética
8.
J Chem Neuroanat ; 76(Pt B): 90-97, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26808467

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of late onset autosomal dominant form of Parkinson disease (PD). Gain of kinase activity due to the substitution of Gly 2019 to Ser (G2019S) is the most common mutation in the kinase domain of LRRK2. Genetic predisposition and environmental toxins contribute to the susceptibility of neurodegeneration in PD. To identify whether the genetic mutations in LRRK2 increase the susceptibility to environmental toxins in PD models, we exposed transgenic mice expressing human G2019S mutant or wild type (WT) LRRK2 to the environmental toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP treatment resulted in a greater loss of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc) in LRRK2 G2019S transgenic mice compared to the LRRK2 WT overexpressing mice. Similarly loss of dopamine levels were greater in the striatum of LRRK2 G2019S mice when compared to the LRRK2 WT mice when both were treated with MPTP. This study suggests a likely interaction between genetic and environmental risk factors in the PD pathogenesis and that the G2019S mutation in LRRK2 increases the susceptibility of dopamine neurons to PD-causing toxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...