Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 888-896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330661

RESUMO

Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.

2.
J Colloid Interface Sci ; 651: 919-928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37579666

RESUMO

Ti2Nb10O29, as one of the most promising anode materials for lithium-ion batteries (LIBs), possesses excellent structural stability during lithiation/delithiation cycling and higher theoretical capacity. However, Ti2Nb10O29 faces some challenges, such as insufficient ion diffusion coefficient and poor electronic conductivity. To overcome these problems, this study investigates the effect of applying nanostructure engineering on Ti2Nb10O29 and the lithium storage behaviors. We successfully synthesized hollow Ti2Nb10O29 nanospheres (h-TNO NSs) via solvothermal method using phenolic resin nanospheres as the template. The effects of using a template or not and the annealing atmospheres on the microstructures of the as-prepared Ti2Nb10O29 are investigated. Different nanostructures (porous Ti2Nb10O29 nanoaggregates (p-TNO NAs) without a template and core-shelled Ti2Nb10O29@C nanospheres (cs-TNO@C NSs)) were formed through annealing in Ar. When examined as anodes for LIBs, the h-TNO NSs electrode with hollow spherical structure displayed a better lithium storage performance. Compared to its counterparts, p-TNO NAs and cs-TNO@C NSs, h-TNO NSs electrode exhibited a higher reversible capacity of 282.5 mAh g-1 at 1C, capacity retention of 79.5% (i.e., 224.6 mAh g-1) after 200 cycles, and a higher rate capacity of 173.1 mAh g-1 at 10C after 600 cycles. The excellent electrochemical performance of h-TNO NSs is attributed to the novel structure. The hollow nanospheres with cavities and thin shells not only exposed more active sites and improved ion diffusion, but also buffered the volume variation upon cycling and facilitated electrolyte penetration. This consequently enhanced the lithium storage performance of the electrode and its high pseudocapacitive contribution (90% at 1.0 mV s-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...