Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(9): 091804, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750163

RESUMO

We point out a new type of diurnal effect for the cosmic ray boosted dark matter (DM). The DM-nucleon interactions not only allow the direct detection of DM with nuclear recoils but also allow cosmic rays to scatter with and boost the nonrelativistic DM to higher energies. If the DM-nuclei scattering cross sections are sufficiently large, the DM flux is attenuated as it propagates through the Earth, leading to a strong diurnal modulation. This diurnal modulation provides another prominent signature for the direct detection of boosted sub-GeV DM, in addition to signals with higher recoil energy.

2.
Phys Rev Lett ; 122(21): 211801, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283351

RESUMO

The scalar nonstandard interactions (NSI) can also introduce matter effect for neutrino oscillation in a medium. Especially the recent Borexino data prefer nonzero scalar NSI, η_{ee}=-0.16. In contrast to the conventional vector NSI, the scalar type contributes as a correction to the neutrino mass matrix rather than the matter potential. Consequently, the scalar matter effect is energy independent while the vector one scales linearly with neutrino energy. This leads to significantly different phenomenological consequences in reactor, solar, atmospheric, and accelerator neutrino oscillations. A synergy of different types of experiments, especially those with matter density variation, is necessary to identify the scalar NSI and guarantee the measurement of CP violation at accelerator experiments.

3.
Phys Rev Lett ; 121(4): 041801, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095959

RESUMO

Gluon-gluon to photon-photon scattering gg→γγ offers to the LHC experiments a uniquely powerful probe of dimension-8 operators in the standard model effective field theory that are quadratic in both the electromagnetic and gluonic field-strength tensors, such as would appear in the Born-Infeld extension of the standard model. We use 13-TeV ATLAS data on the production of isolated photon pairs to set lower limits on the scales of dimension-8 operators M≳1 TeV and discuss the prospective sensitivities of possible future hadron colliders.

4.
Phys Rev Lett ; 108(4): 041801, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400823

RESUMO

The residual Z(2)(s)(k) and Z(2)(s)(k) symmetries induce a direct and unique phenomenological relation with θx (≡ θ13) expressed in terms of the other two mixing angles θs(≡ θ12) and θa(≡ θ23) and the Dirac CP phase δD. Z(2)(s)(k) predicts a θx probability distribution centered around 3°-6° with an uncertainty of 2°-4°, while those from Z(2)(s)(k) are approximately a factor of 2 larger. Either result fits the T2K, MINOS, and Double Chooz measurements. Alternately, a prediction for the Dirac CP phase δD results in a peak at ± 74° (± 106°) for Z(2)(s)(k) or ± 123° (± 57°) for Z(2)(s)(k) which is consistent with the latest global fit. We also give a distribution for the leptonic Jarlskog invariant Jν which can provide further tests from measurements at T2K and NOνA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...