Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(8): 269, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954139

RESUMO

In the confined space of the underground coal mine, which is dominated by transportation lanes, explosion-proof diesel-powered trackless rubber-wheeled vehicles are becoming the main transportation equipment, and the exhaust gas produced by them is hazardous to the health of workers and pollutes the underground environment. In this experiment, a similar test platform is built to study the effects of wind speed, vehicle speed, and different wind directions on the diffusion characteristics of exhaust gas. In this paper, CO and SO2 are mainly studied. The results show that the diffusion of CO and SO2 gas is similar and the maximum SO2 concentration only accounts for 11.4% of the CO concentration. Exhaust gas is better diluted by increasing the wind speed and vehicle speed, respectively. Downwind is affected by the reverse wind flow and diffuses to the driver's position, which is easy to cause occupational diseases. When the wind is a headwind, the exhaust gases spread upwards and make a circumvention movement, gathering at the top. When the wind speed and vehicle speed are both 0.6 m/s, the CO concentration corresponds to the change trend of the Lorentz function when the wind is downwind and the CO concentration corresponds to the change trend of the BiDoseResp function when the wind is headwind. The study of exhaust gas diffusion characteristics is of great significance for the subsequent purification of the air in the restricted mine space and the protection of the workers' occupational health.


Assuntos
Minas de Carvão , Espaços Confinados , Emissões de Veículos , Vento , Emissões de Veículos/análise , Dióxido de Enxofre/análise , Monóxido de Carbono/análise , Difusão , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise
2.
Sci Rep ; 14(1): 13423, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862618

RESUMO

To effectively control the dust generated by coal mining operations, a new type of cyclonic pneumatic mist curtain dust control device was developed. Using CFD software, numerical simulations were conducted on the internal airflow velocity field, the exit velocity of the cyclonic pneumatic mist curtain, and the mist droplet particle field of the curtain. Experiments were carried out to measure the spray coverage, droplet size, and the dust control performance of the model device. The results indicate that when the water pump supply pressure is 8 MPa, the fan supply wind speed is 12 m/s, and the nozzle installation angle is 75 degrees, the cyclonic pneumatic mist curtain dust control device model operates under optimal conditions. The effective coverage of the cyclonic mist curtain is 380 × 3300 mm, fully suppressing dust generation on one side of the curtain. An optimal dust removal distance of about 90 cm was determined. After installing the cyclonic pneumatic mist curtain dust control device, the average dust reduction efficiency for respirable dust reached 91.07%, and the overall dust reduction efficiency achieved 93.34%.

3.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793165

RESUMO

Monitoring the temperature of the coal gangue mountains is fundamental to preventing their spontaneous combustion. However, the existing temperature monitoring systems fail to achieve stable, pollution-free temperature monitoring without affecting vegetation growth in these mountains. To address this issue, this work proposes a flexible thermoelectric device (FTD) based on a protrusion-structured liquid metal elastomer (LME). Utilizing a high-thermal-conductivity LME, the FTD adheres closely to the surface of the gravity heat pipe (GHP), ensuring compatibility between FTD and the curved surface of the GHP. Simultaneously, employing a low-thermal-conductivity elastomer helps concentrate heat onto FTD, thereby enhancing thermoelectric power generation efficiency. Additionally, the impact of the shape, size, and height of the protrusion structure at the cold end of the GHP on its efficiency was also investigated. The practical application of FTD on GHP was demonstrated.

4.
Sci Rep ; 14(1): 9312, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654046

RESUMO

In order to efficiently and accurately control coal dust pollution in coal mining faces, this study addresses the insufficient research on the dust generation mechanism during cutting. Firstly, a similar experimental platform for simulating coal wall cutting with a drum cutter was used to investigate the changes in coal wall fragmentation and dust generation at drum speeds of 35 r/min, 50 r/min, 65 r/min, and 80 r/min. The experimental results revealed that the degree of coal wall fragmentation and dust generation increased with the increase in rotational speed, leading to a wider range of particle size distribution and an increase in the generation of fine dust particles. A 1:1 scale discrete element simulation of coal wall cutting with a drum cutter was conducted based on the experiments. The results indicated that, under the four rotational speeds, the cracks generated during coal wall fracture were predominantly tensile cracks, accounting for over 76% of the total crack count. The total number of cracks increased from 10,600 to 11,200, the number of free single particles increased from 2555 to 2728, and the fragmentation volume increased from 0.021607 to 0.023024 m3. The range and degree of coal wall fragmentation increased with the increase in drum speed.

5.
ACS Omega ; 9(3): 3758-3771, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284022

RESUMO

Gob-side entry retained by cutting roof (GERCR) is a novel and widely used nonpillar mining technology, but the gas emissions from gob are large, and the gas migration characteristics change obviously, which easily leads to serious safety accidents such as gas explosions and personnel suffocation. The discrete element method-computational fluid dynamics (DEM-CFD) coupled model was proposed and used to study the gas flow field in gob under this technology. Through the calculation of this coupled model, the gas distribution and emission characteristics of gob under different ventilation modes of GERCR technology were clarified, and the areas where the gas exceeds the limit in the roadway were determined. To prevent and control gas accumulation, three-dimensional gas drainage technology in the GERCR working face was proposed based on the above research conclusions. Through the field application and monitoring, the characteristics of gas emission and the effect of gas drainage in the gob of GERCR technology were verified. The on-site monitoring results show that the DEM-CFD coupled model established above can simulate well the gas emission characteristics of the GERCR gob, and the three-dimensional drainage system can well control the gas accumulation in the roadway. The research results are of great significance to control gas disasters of this novel nonpillar mining technology.

6.
PLoS One ; 18(12): e0286101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150425

RESUMO

A numerical model of single-particle fog-dust collision coupling in a high-speed airflow based on three-phase flow theory. The effect of the fog-to-dust particle size ratio, relative velocity between the fog and dust particles, collision angle and contact angle at the wetting humidity function of dust particles is investigated. Different particle size ratios are determined for achieving the optimal wetting humidity for the interaction of high-velocity aerosols with dust particles of different sizes, for differ, that is, kPM2.5 = 2:1, kPM10 = 3.5:1 and kPM20 = 1.5:1. The optimal humidity increases with the relative velocity U between the fog and dust particles in the high-speed airflow. The larger the collision angle is, the lower the wetting rate is.The smaller the contact angle between the solid and liquid is, the better droplet wetting on dust is. The fine kinetic mechanism of single-particle fog-dust collision-coupling in a high-speed airflow is elucidated in this study.


Assuntos
Poeira , Poeira/análise , Tamanho da Partícula , Simulação por Computador , Umidade , Aerossóis/análise
7.
Environ Sci Pollut Res Int ; 30(21): 59316-59326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004612

RESUMO

To solve the problem of excessive dust concentration in the belt transportation roadway of the mine. Numerical simulations were used to study the dust migration in the belt transportation roadway under 1.5 m/s ventilation conditions. The simulation results show the process of dust ejection from the inflow chute to contamination of the whole belt transportation roadway, and the spatial distribution of dust velocity. A comprehensive dust reduction scheme of "central suppression and bilateral splitting" was designed according to the dust distribution, with simultaneous control of the infeed chute and the roadway. In practical application, pneumatic spraying greatly reduces the amount of dust in the guide chute. The misting screen has a significant effect on dust collection and segregation. The solution effectively controls the dust in the space of 20 m on both sides of the transfer point, and the dust removal efficiency reaches more than 90%.


Assuntos
Poeira , Meios de Transporte , Poeira/análise , Simulação por Computador , Ventilação
8.
PLoS One ; 17(11): e0277710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395122

RESUMO

For the problem of coal dust pollution in the return air lane of the comprehensive mining working face of soft rock mines.Based on the principle of supersonic siphon pneumatic atomization dust control, mobile vehicle-mounted pneumatic spraying combined with full-section fog curtain dust control technology is proposed to address the coal dust pollution problem in the return air tunnel of the comprehensive mining working face of soft rock mines. This technology has a wider spraying range, stronger wind resistance and lower energy consumption.Using the k-ε turbulence module and the fluid flow particle tracking module of COMSOL simulation software, a three-dimensional numerical model of the return air tunnel was established. The effect of wind flow characteristics on the diffusion range of coal dust and fog droplets was analysed, and the dust transport pattern and dust control effect of the new technology were obtained for different cross-sectional return airways. The results show that the velocity of the wind flow is continuously decayed by the slope, and the dust of different particle sizes is distributed differently by the inertial force. Coal dust with particle sizes larger than 6.5 µm accumulates below the structure at a lower velocity, and coal dust with particle sizes smaller than 4.5 µm is mostly suspended above the structure at a higher velocity. The device effectively stops the transport of dust and covers the whole section of the roadway, and the dust removal efficiency reaches 96.53%~97.93%, which provides relevant theoretical support and treatment means for the control of dust pollution in the return airway of coal mines.


Assuntos
Minas de Carvão , Poeira , Poeira/análise , Estudos Transversais , Carvão Mineral/análise , Tecnologia
9.
PLoS One ; 17(8): e0272304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35994466

RESUMO

In order to solve the problem of coal dust pollution at the transfer point, a three-dimensional numerical model of wind flow-coal dust at the loading point of underground rubber run was established by computational fluid dynamics (CFD) discrete particle model and finite element method and k-ε turbulence model, and the coal dust diffusion pollution phenomenon caused by the coal flow transfer under the intersection of wind flow in the cross tunnel was studied. Based on the simulation results of wind flow velocity contour, pressure contour and isochronous flow vector distribution, the influence mechanism of wind flow and coal dust characteristics on the distribution of wind flow and coal dust diffusion in the roadway is analysed, and a dust control and reduction system and treatment scheme with new pneumatic screw spray technology as the core is proposed to suppress coal dust pollution at the reloading point. The results of the study show that the wind flow distribution is mainly influenced by the intersection of tape traction and cross-roadway wind flow, showing a complex multi-layer distribution along the roadway and in the normal direction; the diffusion of coal dust of different particle sizes is influenced by the roadway wind flow, and coal dust with particle sizes in the range of 10µm~20µm is more easily diffused, and the dust with particle sizes in the range of 20µm~45µm is mainly collected and suspended near the vortex wind flow at the cross-roadway. The coal dust in the range of 20 µm~45 µm is more likely to gather in the vortex; the treatment system effectively controls the coal dust inside the dust cover, and the spiral-shaped transported droplet particle group formed by the pneumatic spiral spray combines with it efficiently, which verifies the dust control and reduction effect of the pneumatic spiral spray system at the transfer point, and the dust removal efficiency reaches 89.35%~93.06%, which provides relevant theoretical support for the treatment of dust pollution at the coal transfer point in underground coal mines It provides the theoretical support and means to control dust pollution at underground coal transfer points.


Assuntos
Minas de Carvão , Carvão Mineral , Carvão Mineral/análise , Minas de Carvão/métodos , Poeira/análise , Minerais , Tamanho da Partícula , Tecnologia
10.
ACS Omega ; 7(22): 18350-18360, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694453

RESUMO

The structural characteristics of coal at the molecular level are important for its efficient use. Bituminous coal from the Baozigou Coal Mine is investigated, using elemental analysis, 13C nuclear magnetic resonance, X-ray photoelectron spectroscopy, and Fourier transform infrared. The molecular structure was determined. The aromatic compounds of bituminous coal molecules are primarily two- and three-ring structures, and the aliphatic structures are primarily in the form of methyl, ethyl side chains, and naphthenic hydrocarbons. The ratio of aromatic bridge carbon to peripheral carbon in the molecular structure is 0.279. Oxygen atoms in the form of carbonyl, phenolic hydroxyl and C-O, and nitrogen atoms in pyrroles. Thus, the average structure model of bituminous coal macromolecules was constructed; the molecular formula was C169H128O10N2S, and the molecular weight was 2378. The aromatic structural units in the macromolecular structure of coal include four naphthalenes, three anthracenes, two tetracenes, and heteroatoms in the form of three carbonyl groups, one phenolic hydroxyl group, one pyrrole, and one pyridine. The structure optimization and annealing kinetic simulation of a single macromolecular structure model were performed. Chemical bonds such as bridge bonds and aliphatic bonds were found to be twisted, and π-π interactions between the aromatic sheets in the molecule produced adjacent aromatic sheets. This arrangement tends to be approximately parallel, and the total energy decreases from 6713.401 to 2667.595 kJ/mol, among which the bond stretching energy and van der Waals energy dominate. We used 20 bituminous coal macromolecular models to construct aggregated structural models. After optimization by molecular dynamics simulation, the macromolecules were constrained by the surrounding molecules, and the sheet-like aromatic carbon structures that were originally approximately parallel were distorted. The macromolecular structure model of bituminous coal constructed in this study provides a theoretical model basis for the optimal surfactant.

11.
ACS Omega ; 7(21): 17593-17599, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664608

RESUMO

To improve the efficiency of coal dust removal by water spray technology, the addition of wetting agents in water becomes the main dust removal method. The influence of sodium dodecyl sulfate (SDS), sodium dodecyl sulfonate (SDDS), and sodium dodecylbenzene sulfonate (SDBS) on the wettability of coal dust is studied by experimental and molecular dynamics (MD) simulation. Measurement of the contact angle and surface tension was accomplished via relevant experiments for the three wetting agents, and their adhesion work, spreading work, and wetting work were also calculated. A preferred experimental method of conventional coal dust wetting agent is optimized. The wettability of the three wetting agents upon bituminous coal follows the trend: SDS > SDDS > SDBS. The simulation was performed based on MD to derive the intermolecular interaction energy, diffusion coefficient of water molecules, and water molecule count in the vicinity of the hydrophilic groups of the wetting agents. The wetting mechanism and performance of the wetting agent solution on bituminous coal were identified. The simulation results of the wetting performance of the wetting agents are consistent with the experimental results, which verifies the reliability of the simulation method. An easy, time-saving, and labor-saving MD simulation method is proposed, which provides a novel insight for choosing various wetting agents of coal dust.

12.
Food Funct ; 13(11): 6233-6243, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587126

RESUMO

The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.


Assuntos
Chenopodium quinoa , Hordeum , Vigna , Aminoácidos/metabolismo , Chenopodium quinoa/química , Colecistocinina/metabolismo , Digestão , Células Enteroendócrinas , Hordeum/metabolismo , Nitrogênio/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Receptores de Detecção de Cálcio/metabolismo
13.
ACS Omega ; 7(13): 11519, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35402759

RESUMO

[This corrects the article DOI: 10.1021/acsomega.1c05422.].

14.
PLoS One ; 17(4): e0266671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421131

RESUMO

To solve the problem of the inability of traditional spray dust removal technology to efficiently restrain dust diffusion at the heading face, a multilayer spiral fog curtain dust control method based on spirally arranged pneumatic nozzles is proposed. In this paper, the k-ɛ turbulence model and K-H droplet breakage model are used. First, different airflow fields are analyzed by simulating the simultaneous injection of different numbers of nozzles, and the motion law of airflow interaction is obtained. Taking the two-layer fog curtain as an example, a multiphysical field coupling numerical simulation of the two-layer spiral fog curtain applied in the field is carried out, and the variation law of its velocity field distribution and particle motion characteristics is analyzed. A similar experimental platform is established to verify the effectiveness of the simulation results and the feasibility of the dust removal scheme. The simulation results show that the double helix arrangement will form a rotating airflow with the cutting arm as the axis to cover the whole roadway section and produce a double-layer spiral fog curtain. The water mist is fragmented into smaller fog droplets under the action of rotating airflow, which improves the dust catching effect of the fog curtain. Experiments show that the dust removal rate and efficiency of multilayer spiral fog curtains are obviously stronger than those of natural dust reduction and traditional spray. After 3 minutes, a dust concentration of approximately 470 mg/m3 can be reduced to less than 4 mg/m3. The average dust removal rates of total dust and exhaled dust were 2.600 mg/(m3.s) and 0.189 mg/(m3.s), respectively, and the dust removal efficiencies were 97.01% and 94.32%.


Assuntos
Poeira , Água , Simulação por Computador , Difusão
15.
PLoS One ; 17(2): e0263740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134066

RESUMO

To examine the diffusion characteristics of airflow and dust particles, a multi-factor and multi-level physical self-developed testing system is established. In this study, bunker height, chute angle, feeding speed, coal granularity, and belt speed are selected as independent variables, and airflow velocity and dust concentration are the response variables. The two-factor interactive model is established to analyze the primary and secondary relationship between the independent variables and the response variables. The results demonstrate a denser contour distribution of three-dimensional curved surfaces, suggesting an obvious interaction between the factors. The bunker height increases from 0.75 m to 1.15 m, the maximum increment of the induced airflow velocity at the outlet of the guide chute is observed to be 0.35 m/s, meanwhile, and with the increase in the feed speed from 2t/h to 8t/h, the increment of the induced airflow velocity at the outlet of the guide chute is recorded to be 51%. The coal granularity and bunker height depicted the highest influence on induced air velocity and dust concentration, and the feeding speed proved to be the secondary parameter. This two-factor interactive model can accurately forecast the actual values with a deviation of the calculated values limited to 9%. These research results support the existing research and provide a theoretical foundation to guide the dust control at belt conveyor transfer stations.


Assuntos
Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Material Particulado/análise , Movimentos do Ar , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/análise , China , Carvão Mineral/análise , Minas de Carvão , Difusão , Poeira/análise , Humanos , Fenômenos Fisiológicos Respiratórios
16.
ACS Omega ; 7(1): 780-785, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036744

RESUMO

To solve the problem of poor dust wettability during coal mine dust treatment, sodium dodecyl sulfate (SDS) and alkyl glycoside (APG1214) were selected for compounding. An efficient, environmentally friendly, economical wetting agent was prepared. First, through molecular dynamics simulation studies, it was determined that the tail group C of SDS and APG1214 was adsorbed on the surface of bituminous coal, and the head groups S and O were adsorbed on the surface of water. The simulation result is found to be consistent with the surfactant solution dust removal theory, which proves the confidence of simulation. Then, by comparing the interaction of water-SDS and APG1214-bituminous coal and water-bituminous coal systems and the number of hydrogen bonds, the wetting mechanism of the SDS and APG1214 solution on bituminous coal was revealed. Finally, the surface tension, contact angle, and wetting time of different SDS and APG1214 solutions were determined by experiments and they decreased with decreasing mass fraction of SDS at the same concentration. The surface tension of the SDS and APG1214 solution and the number of micelles affected the wettability of bituminous coal. The optimal concentration of the SDS and APG1214 solution was 0.7%, and the optimal ratio was SDS/APG1214 = 1:3.

17.
PLoS One ; 16(6): e0252277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166372

RESUMO

The distribution of multiscale pores and fractures in coal and rock is an important basis for reflecting the capacity of fluid flow in coal seam seepage passages. Accurate extraction and qualitative and quantitative analysis of pore-fracture structures are helpful in revealing the flow characteristics of fluid in seepage channels. The relationship between pore and fracture connectivity can provide a scientific reference for optimizing coal seam water injection parameters. Therefore, to analyse the change in permeability caused by the variability in the coal pore-fracture network structure, a CT scanning technique was used to scan coal samples from the Leijia District, Fuxin. A total of 720 sets of original images were collected, a median filter was used to filter out the noise in the obtained images, and to form the basis of a model, the reconstruction and analysis of the three-dimensional pore-fracture morphology of coal samples were carried out. A pore-fracture network model of the coal body was extracted at different scales. Using the maximum sphere algorithm combined with the coordination number, the effect of different quantitative relationships between pore size and pore throat channel permeability was studied. Avizo software was used to simulate the flow path of fluid in the seepage channels. The change trend of the fluid velocity between different seepage channels was discussed. The results of the pore-fracture network models at different scales show that the pore-fracture structure is nonuniform and vertically connected, and the pores are connected at connecting points. The pore size distribution ranges from 104 µm to 9425 µm. The pore throat channel length distribution ranges from 4206 µm to 48073 µm. The size of the coordination number determines the connectivity and thus the porosity of the coal seam. The more connected pore channels there are, the larger the pore diameters and the stronger the percolation ability. During flow in the seepage channels of the coal, the velocity range is divided into a low-speed region, medium-speed region and high-speed region. The fluid seepage in the coal seam is driven by the following factors: pore connectivity > pore and pore throat dimensions > pore and pore throat structure distribution. Ultimately, the pore radius and pore connectivity directly affect the permeability of the coal seam.


Assuntos
Algoritmos , Carvão Mineral , Simulação por Computador , Fraturamento Hidráulico/métodos , Tomografia Computadorizada por Raios X/métodos , Movimentos da Água , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...