Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Transl Med ; 22(1): 605, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951874

RESUMO

BACKGROUND: Uveal melanoma (UM), the most common adult intraocular tumor, is characterized by high malignancy and poor prognosis in advanced stages. Angiogenesis is critical for UM development, however, not only the role of vascular endothelial dysfunction in UM remains unknown, but also their analysis at the single-cell level has been lacking. A comprehensive analysis is essential to clarify the role of the endothelium in the development of UM. METHODS: By using single-cell RNA transcriptomics data of 11 cases of primary and liver metastasis UM, we analyzed the endothelial cell status. In addition, we analyzed and validated ECs in the in vitro model and collected clinical specimens. Subsequently, we explored the impact of endothelial dysfunction on UM cell migration and explored the mechanisms responsible for the endothelial cell abnormalities and the reasons for their peripheral effects. RESULTS: UM metastasis has a significantly higher percentage of vascular endothelial cells compared to in situ tumors, and endothelial cells in metastasis show significant senescence. Senescent endothelial cells in metastatic tumors showed significant Krüppel-like factor 4 (KLF4) upregulation, overexpression of KLF4 in normal endothelial cells induced senescence, and knockdown of KLF4 in senescent endothelium inhibited senescence, suggesting that KLF4 is a driver gene for endothelial senescence. KLF4-induced endothelial senescence drove tumor cell migration through a senescence-associated secretory phenotype (SASP), of which the most important component of the effector was CXCL12 (C-X-C motif chemokine ligand 12), and participated in the composition of the immunosuppressive microenvironment. CONCLUSION: This study provides an undesirable insight of senescent endothelial cells in promoting UM metastasis.


Assuntos
Movimento Celular , Senescência Celular , Células Endoteliais , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas , Melanoma , Análise de Célula Única , Neoplasias Uveais , Humanos , Neoplasias Uveais/patologia , Neoplasias Uveais/genética , Melanoma/patologia , Melanoma/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Masculino
2.
Cell Discov ; 10(1): 63, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862482

RESUMO

Conjunctival melanoma (CoM) is a potentially devastating tumor that can lead to distant metastasis. Despite various therapeutic strategies for distant metastatic CoM, the clinical outcomes remain unfavorable. Herein, we performed single-cell RNA sequencing (scRNA-seq) of 47,017 cells obtained from normal conjunctival samples (n = 3) and conjunctival melanomas (n = 7). Notably, we noticed a higher abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME), correlated with enhanced angiogenic capacity and increased VEGFR expression in distal metastatic CoM. Additionally, we observed a significant decrease in the proportion of total CD8+ T cells and an increase in the proportion of naive CD8+ T cells, contributing to a relatively quiescent immunological environment in distal metastatic CoM. These findings were confirmed through the analyses of 70,303 single-cell transcriptomes of 7 individual CoM samples, as well as spatially resolved proteomes of an additional 10 samples of CoMs. Due to the increase of VEGFR-mediated angiogenesis and a less active T cell environment in distal metastatic CoMs, a clinical trial (ChiCTR2100045061) has been initiated to evaluate the efficacy of VEGFR blockade in combination with anti-PD1 therapy for patients with distant metastatic CoM, showing promising tumor-inhibitory effects. In conclusion, our study uncovered the landscape and heterogeneity of the TME during CoM tumorigenesis and progression, empowering clinical decisions in the management of distal metastatic CoM. To our knowledge, this is the initial exploration to translate scRNA-seq analysis to a clinical trial dealing with cancer, providing a novel concept by accommodating scRNA-seq data in cancer therapy.

3.
Invest Ophthalmol Vis Sci ; 65(6): 8, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38837168

RESUMO

Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.


Assuntos
Neurofibromatose 1 , Glioma do Nervo Óptico , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Glioma do Nervo Óptico/terapia , Glioma do Nervo Óptico/genética , Fatores de Risco , Animais , Neurofibromina 1/genética , Neoplasias do Nervo Óptico/terapia , Neoplasias do Nervo Óptico/genética
4.
Cancer Lett ; 592: 216911, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38685450

RESUMO

Cancer-associated fibroblasts (CAFs) exhibit notable versatility, plasticity, and robustness, actively participating in cancer progression through intricate interactions within the tumor microenvironment (TME). N6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic mRNA, playing essential roles in mRNA metabolism and various biological processes. Howbeit, the precise involvement of m6A in CAF activation remains enigmatic. In this study, we revealed that the m6A demethylase FTO supports CAF-mediated angiogenesis through activation of EGR1 and VEGFA in conjunctival melanoma (CoM). First, single-cell transcriptome analysis revealed that FTO was specifically upregulated in the CAF population, thereby contributing to the hypo-m6A status in the TME of CoM. Moreover, CAFs of CoM displayed extensive proangiogenic potential, which was largely compromised by FTO inhibition, both in vitro and in vivo. By employing multi-omics analysis, we showed that FTO effectively eliminates the m6A modifications of VEGFA and EGR1. This process subsequently disrupts the YTHDF2-dependent mRNA decay pathway, resulting in increased mRNA stability and upregulated expression of these molecules. Collectively, our findings initially indicate that the upregulation of FTO plays a pivotal role in tumor development by promoting CAF-mediated angiogenesis. Therapeutically, targeting FTO may show promise as a potential antiangiogenic strategy to optimize cancer treatment.


Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Fibroblastos Associados a Câncer , Proteína 1 de Resposta de Crescimento Precoce , Neovascularização Patológica , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , Estabilidade de RNA , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Indutores da Angiogênese/metabolismo
5.
Exp Hematol Oncol ; 13(1): 37, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570883

RESUMO

Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from  laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.

6.
Acta Pharm Sin B ; 14(3): 1187-1203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486999

RESUMO

Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.

7.
Acta Ophthalmol ; 102(5): e851-e861, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38420891

RESUMO

PURPOSE: To identify high-risk histopathologic and molecular features of local recurrence, nodal metastasis, distant metastasis (DM) and disease-specific death (DSD) in conjunctival melanoma (CoM). METHODS: Ninety patients with pathologically diagnosed CoM between 2008 and 2023 were enrolled. Immunohistochemistry staining of BRAFV600E, NRASQ61R, CD117, PD-1 and PD-L1 was performed in 65 and 45 patients, respectively. Cox regression and Kaplan-Meier survival analysis were conducted to identify risk factors for local recurrence, nodal metastasis, DM and DSD. RESULTS: Pathologically, ulceration (hazard ratio [HR]: 3.170; 95% CI: 1.312-7.659; p = 0.01) and regression (HR: 3.196; 95% CI: 1.094-9.335; p = 0.034) were risk factors for DM. Tumour thickness ≥ 4 mm (HR: 4.889; 95% CI: 1.846-12.946; p = 0.001) and regression (HR: 4.011; 95% CI: 1.464-10.991; p = 0.007) were risk factors for DSD. For patients with tumour thickness < 4 mm, the presence of ulceration indicated a higher risk of nodal metastasis (log-rank p = 0.0011), DM (log-rank p = 0.00051) and DSD (log-rank p = 0.02). Patients with regression (+)/tumour-infiltrating lymphocytes (TILs) (+) had a higher risk for DM (log-rank p = 0.011) and DSD (log-rank p = 0.0032). Molecularly, the positive rate of BRAFV600E, NRASQ61R, CD117, PD-1 and PD-L1 was 40.00% (26/65), 43.08% (28/65), 70.77% (46/65), 46.67% (21/45) and 28.89% (13/45), respectively. Positive BRAFV600E was identified as an independent risk factor for DM (HR: 2.533; 95% CI: 1.046-6.136, p = 0.039). The expression level of BRAFV600E was positively correlated with vascular invasion (p = 0.01), as well as the expression levels of PD-1 (p = 0.038) and PD-L1 (p = 0.049). CONCLUSIONS: Tumour thickness ≥ 4 mm, ulceration, the coexistence of regression and TILs, and positive BRAFV600E were risk factors for poor prognosis of CoM patients. Besides, expression level of BRAFV600E was positively correlated with the expression levels of PD-1 and PD-L1.


Assuntos
Neoplasias da Túnica Conjuntiva , Melanoma , Humanos , Melanoma/genética , Melanoma/diagnóstico , Melanoma/patologia , Melanoma/metabolismo , Neoplasias da Túnica Conjuntiva/genética , Neoplasias da Túnica Conjuntiva/patologia , Neoplasias da Túnica Conjuntiva/metabolismo , Neoplasias da Túnica Conjuntiva/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Fatores de Risco , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adulto , Recidiva Local de Neoplasia , Metástase Linfática , Imuno-Histoquímica , Proteínas Proto-Oncogênicas B-raf/genética , Idoso de 80 Anos ou mais , Seguimentos , Taxa de Sobrevida/tendências , Estadiamento de Neoplasias , Prognóstico
9.
Br J Ophthalmol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383070

RESUMO

AIMS: Conjunctival melanoma (CoM) is a rare but highly lethal ocular melanoma and there is limited understanding of its genetic background. To update the genetic landscape of CoM, whole-exome sequencing (WES) and targeted next-generation sequencing (NGS) were performed. METHODS: Among 30 patients who were diagnosed and treated at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, from January 2018 to January 2023, WES was performed on 16 patients, while targeted NGS was conducted on 14 patients. Samples were analysed to identify the mutated genes, and the potential predictive factors for progression-free survival were evaluated. Furthermore, the expression of the mutated gene was detected and validated in a 30-patient cohort by immunofluorescence. RESULTS: Mutations were verified in classic genes, such as BRAF (n=9), NRAS (n=5) and NF1 (n=6). Mutated FAT4 and BRAF were associated with an increased risk for the progression of CoM. Moreover, decreased expression of FAT4 was detected in CoM patients with a worse prognosis. CONCLUSIONS: The molecular landscape of CoM in Chinese patients was updated with new findings. A relatively high frequency of mutated FAT4 was determined in Chinese CoM patients, and decreased expression of FAT4 was found in patients with worse prognoses. In addition, both BRAF mutations and FAT4 mutations could serve as predictive factors for CoM patients.

10.
Invest Ophthalmol Vis Sci ; 65(1): 27, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214685

RESUMO

Purpose: Acute retinal arterial ischemia diseases (ARAIDs) are ocular emergencies that require immediate intervention within a restricted therapeutic window to prevent blindness. However, the underlying molecular mechanisms contributing to the pathogenesis of ARAIDs remain enigmatic. Herein, we present the single-cell RNA sequencing (scRNA-seq) alterations during ischemia in the primate retina as a preliminary endeavor in understanding the molecular complexities of ARAIDs. Methods: An ophthalmic artery occlusion model was established through ophthalmic artery ligation in two Macaca fascicularis. scRNA-seq and bioinformatics analyses were used to detect retinal changes during ischemia, which are further validated by immunofluorescence analysis. Western blot and flow cytometry assays were performed to measure the microglia polarization status. Results: The findings of this study reveal notable changes in the retina under acute ischemic conditions. Particularly, retinal ischemia compromised mitochondrial functions of rod photoreceptors, partly leading to the rapid loss of healthy rods. Furthermore, we observed a noteworthy transcriptional alteration in the activation of microglia induced by ischemia. The targeted correction of the proinflammatory cytokine CXCL8 effectively suppresses microglia M1 polarization in retinal ischemia, ultimately reducing the proinflammatory transformation in vitro. In addition, retina ischemia induced the apoptotic inclination of endothelial cells and the heightened interaction with microglia, which signifies the influence of microglia in disrupting the retinal-blood barrier. Conclusions: Our research has successfully identified and described the pathologic alterations occurring in several cell types during a short period of ischemia. These observations provide valuable insights for ameliorating retinal damage and promoting the restoration of vision.


Assuntos
Células Endoteliais , Doenças Retinianas , Animais , Macaca fascicularis , Células Endoteliais/metabolismo , Retina/metabolismo , Doenças Retinianas/patologia , Microglia/metabolismo , Isquemia/metabolismo , Perfilação da Expressão Gênica
11.
Nucleic Acids Res ; 52(5): 2273-2289, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118002

RESUMO

Albeit N1-Methyladenosine (m1A) RNA modification represents an important regulator of RNA metabolism, the role of m1A modification in carcinogenesis remains enigmatic. Herein, we found that histone lactylation enhances ALKBH3 expression and simultaneously attenuates the formation of tumor-suppressive promyelocytic leukemia protein (PML) condensates by removing the m1A methylation of SP100A, promoting the malignant transformation of cancers. First, ALKBH3 is specifically upregulated in high-risk ocular melanoma due to excessive histone lactylation levels, referring to m1A hypomethylation status. Moreover, the multiomics analysis subsequently identified that SP100A, a core component for PML bodies, serves as a downstream candidate target for ALKBH3. Therapeutically, the silencing of ALKBH3 exhibits efficient therapeutic efficacy in melanoma both in vitro and in vivo, which could be reversed by the depletion of SP100A. Mechanistically, we found that YTHDF1 is responsible for recognition of the m1A methylated SP100A transcript, which increases its RNA stability and translational efficacy. Conclusively, we initially demonstrated that m1A modification is necessary for tumor suppressor gene expression, expanding the current understandings of dynamic m1A function during tumor progression. In addition, our results indicate that lactylation-driven ALKBH3 is essential for the formation of PML nuclear condensates, which bridges our knowledge of m1A modification, metabolic reprogramming, and phase-separation events.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Antígenos Nucleares , Autoantígenos , Neoplasias Oculares , Histonas , Melanoma , Humanos , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Desmetilação , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Neoplasias Oculares/metabolismo
12.
Invest Ophthalmol Vis Sci ; 64(15): 16, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095907

RESUMO

Purpose: Eyelid sebaceous carcinoma (SeC) is the third most frequent eyelid malignancy worldwide and is relatively prevalent in Asian patients. An eyelid SeC cell line model is necessary for experimental research to explore the etiology and pathogenesis of eyelid SeC. This study established and characterized an eyelid SeC cell line with a TP53 mutation that might be useful for analyzing potential treatment options for eyelid SeC. Methods: The eyelid SeC cell line SHNPH-SeC was obtained from a patient with eyelid SeC at Shanghai Ninth People's Hospital (SHNPH), Shanghai JiaoTong University School of Medicine. Immunofluorescence staining was employed to detect the origination and proliferation activity. Short tandem repeat (STR) profiling was performed for verification. Chromosome analysis was implemented to investigate chromosome aberrations. Whole exome sequencing (WES) was used to discover genomic mutations. Cell proliferation assays were performed to identify sensitivity to mitomycin-C (MMC) and 5-fluorouracil (5-FU). Results: SHNPH-SeC cells were successively subcultured for more than 100 passages and demonstrated rapid proliferation and migration. Karyotype analysis revealed abundant chromosome aberrations, and WES revealed SeC-related mutations in TP53, KMT2C, and ERBB2. An in vivo tumor model was successfully established in NOD/SCID mice. Biomarkers of eyelid SeC, including cytokeratin 5 (CK5), epithelial membrane antigen (EMA), adipophilin, p53, and Ki-67, were detected in SHNPH-SeC cells, original tumors, and xenografts. MMC and 5-FU inhibited the proliferation and migration of SHNPH-SeC cells, and SHNPH-SeC cells presented a greater drug response than non-TP53-mutated SeC cells. Conclusions: The newly established eyelid SeC cell line SHNPH-SeC demonstrates mutation in TP53, the most commonly mutated gene in SeC. It presents SeC properties and malignant characteristics that may facilitate the investigation of cellular behaviors and molecular mechanisms of SeC to explore promising therapeutic strategies.


Assuntos
Adenocarcinoma Sebáceo , Carcinoma , Neoplasias Palpebrais , Neoplasias das Glândulas Sebáceas , Neoplasias Cutâneas , Animais , Camundongos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Camundongos SCID , Camundongos Endogâmicos NOD , China , Adenocarcinoma Sebáceo/genética , Adenocarcinoma Sebáceo/diagnóstico , Adenocarcinoma Sebáceo/metabolismo , Aberrações Cromossômicas , Linhagem Celular Tumoral , Pálpebras/patologia , Neoplasias Palpebrais/genética , Neoplasias Palpebrais/diagnóstico , Neoplasias Palpebrais/metabolismo , Neoplasias das Glândulas Sebáceas/genética , Neoplasias das Glândulas Sebáceas/diagnóstico , Neoplasias das Glândulas Sebáceas/metabolismo , Fluoruracila/farmacologia
13.
Invest Ophthalmol Vis Sci ; 64(15): 31, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133505

RESUMO

Purpose: Retinoblastoma (RB) is a life-threatening malignancy that arises from the retina and is activated upon homozygous inactivation of the tumor suppressor RB1. Gene therapy targeting RB1 is an effective strategy to treat RB. However, it is difficult to target the RB1 gene by site-specific repair, with up to 3366 gene mutation sites identified in RB1. Thus, it is necessary to construct a promising and efficacious gene therapeutic strategy for patients with RB. Methods: To recover the function of the RB1 protein, we constructed a recombinant adeno-associated virus 2 (rAAV2) expressing RB1 that can restore RB1 function and significantly inhibit RB progression. To confirm the clinical feasibility of rAAV2-RB1, the RB1 protein was validated in vitro and in vivo after transfection. To further evaluate the clinical efficacy, RB patient-derived xenograft models were established and applied. The biosafety of rAAV2-RB1 was also validated in immunocompetent mice. Results: rAAV2-RB1 was a rAAV2 expressing the RB1 protein, which was validated in vitro and in vivo. In vitro, rAAV2-RB1 was effectively expressed in patient-derived RB cells. In mice, intravitreal administration of rAAV2-RB1 in a population-based patient-derived xenograft trial induced limited tumor growth. Moreover, after transfection of rAAV2-RB1 in immunocompetent mice, rAAV2-RB1 did not replicate and was expressed in other important organs, except retinas, inducing minor local side effects. Conclusions: Our study suggested a promising efficacy gene therapeutic strategy, which might provide a chemotherapy-independent treatment option for RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Animais , Camundongos , Retinoblastoma/genética , Retinoblastoma/terapia , Retinoblastoma/patologia , Dependovirus/genética , Terapia Genética , Neoplasias da Retina/genética , Neoplasias da Retina/terapia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética
14.
Sci Bull (Beijing) ; 68(24): 3278-3291, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37973465

RESUMO

Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Mutação , Mutação Puntual
15.
J Exp Clin Cancer Res ; 42(1): 291, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924140

RESUMO

Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.


Assuntos
Neoplasias , Linfócitos T , Humanos , Microambiente Tumoral , Neoplasias/patologia , Metabolismo Energético , Imunoterapia , Aminoácidos
16.
Signal Transduct Target Ther ; 8(1): 367, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752146

RESUMO

Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.


Assuntos
Relevância Clínica , Linfonodos , Humanos , Metástase Linfática
18.
J Craniofac Surg ; 34(8): 2379-2383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639658

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Our study attempted to analyze the research trends in HNSCC and compare contributions from different countries, institutions, journals, and authors. MATERIALS AND METHODS: The authors extracted publications in this field from 2002 to 2022 from the Web of Science database. Microsoft Excel and VOSviewer were performed to collect data on publication numbers, analyze publication trends, and visualize relevant results. RESULTS: A total of 1903 publications were screened. In the past 20 years, the United States contributed the most publications and citations in the HNSCC research. China ranked second in the number of publications. The Ophthalmic Plastic and Reconstructive Surgery was the most productive journal concerning HNSCC. ESMAELIB of the University of Texas System and ROSENTHAL EL of Stanford University had published the most publications in this field. Keywords were categorized into 3 clusters: basic study, clinical feature study, and treatment-related study. The keywords "reflectance confocal microscopy", "raman-spectroscopy", and "confocal laser endomicroscopy" were most frequently emerged in the recent years. Management-related research has been recognized as a potential focus in the HNSCC.


Assuntos
Bibliometria , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , China , Bases de Dados Factuais , Neoplasias de Cabeça e Pescoço/cirurgia
19.
Innovation (Camb) ; 4(4): 100452, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485079

RESUMO

An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential.

20.
Cancer Commun (Lond) ; 43(11): 1185-1206, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466203

RESUMO

BACKGROUND: Diversified histone deacetylation inhibitors (HDACis) have demonstrated encouraging outcomes in multiple malignancies. N6-methyladenine (m6 A) is the most prevalent messenger RNA modification that plays an essential role in the regulation of tumorigenesis. Howbeit, an in-depth understanding of the crosstalk between histone acetylation and m6 A RNA modifications remains enigmatic. This study aimed to explore the role of histone acetylation and m6 A modifications in the regulation of tumorigenesis of ocular melanoma. METHODS: Histone modification inhibitor screening was used to explore the effects of HDACis on ocular melanoma cells. Dot blot assay was used to detect the global m6 A RNA modification level. Multi-omics assays, including RNA-sequencing, cleavage under targets and tagmentation, single-cell sequencing, methylated RNA immunoprecipitation-sequencing (meRIP-seq), and m6 A individual nucleotide resolution cross-linking and immunoprecipitation-sequencing (miCLIP-seq), were performed to reveal the mechanisms of HDACis on methyltransferase-like 14 (METTL14) and FAT tumor suppressor homolog 4 (FAT4) in ocular melanoma. Quantitative real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescent staining were applied to detect the expression of METTL14 and FAT4 in ocular melanoma cells and tissues. Cell models and orthotopic xenograft models were established to determine the roles of METTL14 and FAT4 in the growth of ocular melanoma. RNA-binding protein immunoprecipitation-qPCR, meRIP-seq, miCLIP-seq, and RNA stability assay were adopted to investigate the mechanism by which m6 A levels of FAT4 were affected. RESULTS: First, we found that ocular melanoma cells presented vulnerability towards HDACis. HDACis triggered the elevation of m6 A RNA modification in ocular melanoma. Further studies revealed that METTL14 served as a downstream candidate for HDACis. METTL14 was silenced by the hypo-histone acetylation status, whereas HDACi restored the normal histone acetylation level of METTL14, thereby inducing its expression. Subsequently, METTL14 served as a tumor suppressor by promoting the expression of FAT4, a tumor suppressor, in a m6 A-YTH N6-methyladenosine RNA-binding protein 1-dependent manner. Taken together, we found that HDACi restored the histone acetylation level of METTL14 and subsequently elicited METTL14-mediated m6 A modification in tumorigenesis. CONCLUSIONS: These results demonstrate that HDACis exert anti-cancer effects by orchestrating m6 A modification, which unveiling a "histone-RNA crosstalk" of the HDAC/METTL14/FAT4 epigenetic cascade in ocular melanoma.


Assuntos
Histonas , Melanoma , Humanos , Metilação , Histonas/metabolismo , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Melanoma/genética , Carcinogênese , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Metiltransferases/genética , Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...