Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Behav Brain Res ; 471: 115097, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878971

RESUMO

Neuroadaptive changes in the hippocampus underlie addictive-like behaviors in humans or animals chronically exposed to cocaine. miR-181a, which is widely expressed in the hippocampus, acts as a regulator for synaptic plasticity, while its role in drug reinstatement is unclear. In this study, we found that miR-181a regulates the reinstatement of cocaine conditioned place preference(CPP), and altered miR-181a expression changes the complexity of hippocampal neurons and the density and morphology of dendritic spines. By using a luciferase gene reporter, we found that miR-181a targets PRKAA1, an upstream molecule in the mTOR pathway. High miR-181a expression reduced the expression of the PRKAA1 mRNA and promoted mTOR activity and the reinstatement of cocaine CPP. These results indicate that miR-181a is involved in neuronal structural plasticity induced by reinstatement of cocaine CPP, possibly through the activation of the mTOR signaling pathway. This study provides new microRNA targets and a theoretical foundation for the prevention of cocaine-induced reinstatement.

2.
Neurosci Lett ; : 137884, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914277

RESUMO

The nucleus accumbens (NAc) and the anterior limb of internal capsule (ALIC) are effective targets for treating addiction using deep brain stimulation (DBS). However, there have been no reports on the electrophysiological characteristics of addiction nuclei at the single-cell level in humans. This study aimed to investigate the electrical activity characteristics of neurons in the NAc and ALIC using Microelectrode Recording (MER) during DBS surgery in patients with addiction, and six patients with addiction were included (five with heroin addiction and one with alcohol addiction). The microelectrode recording trajectories were reconstructed and recording sites at different depths were determined by merging the pre- and post-operative images in the FrameLink system. The results showed that among the 256 neurons, 204 (80 %) were burst neurons. NAc neurons accounted for the majority (57 %), and the mean firing rate (MFR) was the highest (1.94 Hz). ALIC neurons accounted for the least (14 %), and MFR was the lowest (0.44 Hz). MFR increased after entering the NAc and decreased after exiting the ALIC. In the patients with addiction treated using DBS, the single-cell level electrophysiological characteristics of the different nuclei were found to be distinct along the surgical trajectory.

3.
Cell Death Differ ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902548

RESUMO

Persistent neuroinflammation and progressive neuronal loss are defining features of acute brain injury including traumatic brain injury (TBI) and cerebral stroke. Microglia, the most abundant type of brain-resident immune cells, continuously surveil the environment and play a central role in shaping the inflammatory state of the central nervous system (CNS). In the study, we discovered that the protein expression of METTL3 (a m6A methyltransferase) was upregulated in inflammatory microglia independent of increased Mettl3 gene transcription following TBI in both human and mouse subjects. Subsequently, we identified TRIP12, a HECT-domain E3 ubiquitin ligase, as a negative regulator of METTL3 protein expression by facilitating METTL3 K48-linked polyubiquitination. Importantly, selective ablation of Mettl3 inhibited microglial pathogenic activities, diminished neutrophil infiltration, rescued neuronal loss and facilitated functional recovery post-TBI. Using MeRIP-seq and CUT&Tag sequencing, we identified that METTL3 promoted the expression of Basic Leucine Zipper Transcriptional Factor ATF-Like (BATF), which in turn directly bound to a cohort of characteristic inflammatory cytokines and chemokine genes. Enhanced activities of BATF in microglia elicited TNF-dependent neurotoxicity and can also promote neutrophil recruitment through releasing CXCL2. Pharmacological inhibition of METTL3 using a BBB-penetrating drug-loaded nano-system showed satisfactory therapeutic effects in both TBI and stroke mouse models. Collectively, our findings identified METTL3-m6A-BATF axis as a potential therapeutic target for terminating detrimental neuroinflammation and progressive neuronal loss following acute brain injury. METTL3 protein is significantly up-regulated in inflammatory microglia due to the decreased proteasomal degradation mediated by TRIP12 and ERK-USP5 pathways. METTL3 stabilized BATF mRNA stability and promoted BATF expression through the m6A-IGF2BP2-dependent mechanism. Elevated expression of BATF elicits a pro-inflammatory gene program in microglia, and aggravates neuroinflammatory response including local immune responses and peripheral immune cell infiltration. Genetic deletion or pharmaceutically targeting METTL3-BATF axis suppressed microglial pro-inflammatory activities and promoted neurological recovery following TBI and stroke.

4.
Cell Death Dis ; 15(5): 364, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802337

RESUMO

Mitochondrial dysfunction and oxidative stress are important mechanisms for secondary injury after traumatic brain injury (TBI), which result in progressive pathophysiological exacerbation. Although the Fibronectin type III domain-containing 5 (FNDC5) was reported to repress oxidative stress by retaining mitochondrial biogenesis and dynamics, its possible role in the secondary injury after TBI remain obscure. In present study, we observed that the level of serum irisin (the cleavage product of FNDC5) significantly correlated with the neurological outcomes of TBI patients. Knockout of FNDC5 increased the lesion volume and exacerbated apoptosis and neurological deficits after TBI in mice, while FNDC5 overexpression yielded a neuroprotective effect. Moreover, FNDC5 deficiency disrupted mitochondrial dynamics and function. Activation of Sirtuin 3 (SIRT3) alleviated FNDC5 deficiency-induced disruption of mitochondrial dynamics and bioenergetics. In neuron-specific SIRT3 knockout mice, FNDC5 failed to attenuate TBI-induced mitochondrial damage and brain injuries. Mechanically, FNDC5 deficiency led to reduced SIRT3 expression via enhanced ubiquitin degradation of transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), which contributed to the hyperacetylation and inactivation of key regulatory proteins of mitochondrial dynamics and function, including OPA1 and SOD2. Finally, engineered RVG29-conjugated nanoparticles were generated to selectively and efficiently deliver irisin to the brain of mice, which yielded a satisfactory curative effect against TBI. In conclusion, FNDC5/irisin exerts a protective role against acute brain injury by promoting SIRT3-dependent mitochondrial quality control and thus represents a potential target for neuroprotection after TBI.


Assuntos
Apoptose , Lesões Encefálicas Traumáticas , Fibronectinas , Camundongos Knockout , Mitocôndrias , Neurônios , Estresse Oxidativo , Sirtuína 3 , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/genética , Sirtuína 3/metabolismo , Sirtuína 3/genética , Fibronectinas/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Dinâmica Mitocondrial
5.
Neuroreport ; 35(9): 549-557, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739900

RESUMO

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Assuntos
Lesões Encefálicas Traumáticas , Quimiocina CXCL5 , Doenças Neuroinflamatórias , Animais , Masculino , Camundongos , Anticorpos Neutralizantes/farmacologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Quimiocina CXCL5/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos
6.
Heliyon ; 10(5): e26854, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463769

RESUMO

Background: Studies have been inconclusive on the risk for hemorrhage in patients with a history of aspirin use who underwent emergency external ventricular drainage (EVD)/intracranial pressure (ICP) probe placement. The aim of this study was to explore hemorrhage-related risk factors in order to reduce the risk for hemorrhage in these patients. Methods: Between July 2014 and July 2020, patients were retrospectively divided into EVD/ICP-related hemorrhage and non-hemorrhage groups. The collected data included age, gender, major diagnosis, medical history, imaging examinations, conventional coagulation test data, thromboelastography with platelet mapping (TEG-PM), surgical procedures and discharge conditions. Results: In total 94 patients, 21 in the hemorrhage group (15 males, 6 females) and 73 in the non-hemorrhage group (52 males, 21 females) were included. The majority of hemorrhages were recorded in EVD patients (19/21; 90.5%). Platelet AA pathway inhibition rate of ≥75% (sensitivity: 79.45% specificity: 52.38%) (P = 0.014) and SBP ≥125 mmHg (P = 0.006) were significantly related to hemorrhage. When the platelet AA pathway inhibition rate was ≥75% and the during-procedure SBP was ≥125 mmHg, the hemorrhage rate was significantly higher (83.3%) than with SBP <125 mmHg (6.7%) (P < 0.001). When the inhibition rate was <75%, there were no significant differences in the hemorrhage rates between the during-procedure SBP ≥125 mmHg group (17.2%) and the SBP <125 mmHg group (13.2%) (P > 0.05). Multivariate logistic regression analysis revealed that a platelet AA pathway inhibition rate ≥75% (OR = 5.183, 95% CI: 1.683-15.960) and during-procedure SBP ≥125 mmHg (OR = 4.609, 95% CI: 1.466-14.484) were independent risk factors for EVD/ICP-related hemorrhage. Conclusion: Patients with long-term aspirin therapy, a platelet AA pathway inhibition rate ≥75% and during-procedure SBP ≥125 mmHg had a significantly higher risk of hemorrhage, which could be reduced by adjusting the SBP to <125 mmHg.

7.
World Neurosurg ; 186: 1-6, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395353

RESUMO

BACKGROUND: Watertight duraplasty is essential for surgical management of traumatic anterior skull base (ASB) dural defect but challenging in the deep and narrow operative corridor. Here, the authors report a trans-defect underlay watertight duraplasty (TDUWD) technique for traumatic ASB dural defect. METHODS: TDUWD was performed by inserting a free pericranium graft under the dural defect. The diameter of the pericranium graft was larger than the dural defect. The pericranium graft was sutured to the dural defect watertightly in an "inside-to-outside" direction, with the needle not penetrating the inner layer of pericranium graft. The pedicled pericranium flap was used as a second layer of reconstruction. The characteristics, complications, and outcomes of patients who received TDUWD are reported. RESULTS: A total of 29 patients received TDUWD. Immediate postoperative cessation of cerebrospinal fluid (CSF) leak occurred in 28 patients. One patient recovered after lumber drainage. No patient needed a second operation or reported delayed recurrence of CSF leak. No complication related to the surgical technique was observed. CONCLUSIONS: Use of TDUWD for traumatic ASB dural defect results in an immediate, 1-stage, and definitive correction of CSF leak and seems to be simple, safe, and reliable for large and deeply located dural defects.


Assuntos
Vazamento de Líquido Cefalorraquidiano , Dura-Máter , Procedimentos de Cirurgia Plástica , Base do Crânio , Humanos , Dura-Máter/cirurgia , Dura-Máter/lesões , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Base do Crânio/cirurgia , Base do Crânio/lesões , Procedimentos de Cirurgia Plástica/métodos , Vazamento de Líquido Cefalorraquidiano/cirurgia , Vazamento de Líquido Cefalorraquidiano/etiologia , Adulto Jovem , Idoso , Adolescente , Retalhos Cirúrgicos , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento
8.
Adv Sci (Weinh) ; 11(5): e2305339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044319

RESUMO

Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.


Assuntos
Lesões Encefálicas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , Células Endoteliais , Migração Transendotelial e Transepitelial , Astrócitos , Neutrófilos , Movimento Celular
9.
J Cancer Res Clin Oncol ; 149(15): 13575-13589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515613

RESUMO

OBJECTIVE: The alternative extension of the telomeres (ALT) mechanism is activated in lower grade glioma (LGG), but the role of the ALT mechanism has not been well discussed. The primary purpose was to demonstrate the significance of the ALT mechanism in prognosis estimation for LGG patients. METHOD: Gene expression and clinical data of LGG patients were collected from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohort, respectively. ALT-related genes obtained from the TelNet database and potential prognostic genes related to ALT were selected by LASSO regression to calculate an ALT-related risk score. Multivariate Cox regression analysis was performed to construct a prognosis signature, and a nomogram was used to represent this signature. Possible pathways of the ALT-related risk score are explored by enrichment analysis. RESULT: The ALT-related risk score was calculated based on the LASSO regression coefficients of 22 genes and then divided into high-risk and low-risk groups according to the median. The ALT-related risk score is an independent predictor of LGG (HR and 95% CI in CGGA cohort: 5.70 (3.79, 8.58); in TCGA cohort: 1.96 (1.09, 3.54)). ROC analysis indicated that the model contained ALT-related risk score was superior to conventional clinical features (AUC: 0.818 vs 0.729) in CGGA cohorts. The results in the TCGA cohort also shown a powerful ability of ALT-related risk score (AUC: 0.766 vs 0.691). The predicted probability and actual probability of the nomogram are consistent. Enrichment analysis demonstrated that the ALT mechanism was involved in the cell cycle, DNA repair, immune processes, and others. CONCLUSION: ALT-related risk score based on the 22-gene is an important factor in predicting the prognosis of LGG patients.

10.
Front Neurol ; 14: 1138217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288066

RESUMO

Objective: Traumatic brain injury (TBI) is a global social, economic, and health challenge that is associated with premature death and long-term disability. In the context of rapid development of urbanization, the analysis of TBI rate and mortality trend could provide abundant diagnosis and treatment suggestions, which helps to form future reference on public health strategies. Methods: In this study, as one of major neurosurgical centers in China, we focused on the regime shift of TBI based on 18-year consecutive clinical data and evaluated the epidemiological features. In our current study, a total of 11,068 TBI patients were reviewed. Results: The major cause of TBI was road traffic injuries (44.%), while the main type of injury was cerebral contusion (n = 4,974 [44.94%]). Regarding to temporal changes, a decreasing trend in TBI incidence for patients under 44 years old was observed, while an increasing trend for those aged over 45 years was indicated. Incidences of RTI and assaults decreased, while ground level fall presented increasing incidences. The total number of deaths was 933 (8.43%), with a decreasing trend in overall mortality since 2011. Age, cause of injury, GCS at admission, Injury Severity Score, shock state at admission, trauma-related diagnoses and treatments were significantly associated with mortality. A predictive nomogram model for poor prognosis was developed based on patient's GOS scores at discharge. Conclusions: The trends and characteristics of TBI patients changed with rapid development of urbanization in the past 18 years. Further larger studies are warranted to verify its clinical suggestions.

11.
J Neurosurg ; 139(6): 1784-1791, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209077

RESUMO

OBJECTIVE: Spontaneous basal ganglia hemorrhage is a common type of intracerebral hemorrhage (ICH) with no definitive treatment. Minimally invasive endoscopic evacuation is a promising therapeutic approach for ICH. In this study the authors examined prognostic factors associated with long-term functional dependence (modified Rankin Scale [mRS] score ≥ 4) in patients who had undergone endoscopic evacuation of basal ganglia hemorrhage. METHODS: In total, 222 consecutive patients who underwent endoscopic evacuation between July 2019 and April 2022 at four neurosurgical centers were enrolled prospectively. Patients were dichotomized into functionally independent (mRS score ≤ 3) and functionally dependent (mRS score ≥ 4) groups. Hematoma and perihematomal edema (PHE) volumes were calculated using 3D Slicer software. Predictors of functional dependence were assessed using logistic regression models. RESULTS: Among the enrolled patients, the functional dependence rate was 45.50%. Factors independently associated with long-term functional dependence included female sex, older age (≥ 60 years), Glasgow Coma Scale score ≤ 8, larger preoperative hematoma volume (OR 1.02), and larger postoperative PHE volume (OR 1.03, 95% CI 1.01-1.05). A subsequent analysis evaluated the effect of stratified postoperative PHE volume on functional dependence. Specifically, patients with large (≥ 50 to < 75 ml) and extra-large (≥ 75 to 100 ml) postoperative PHE volumes had 4.61 (95% CI 0.99-21.53) and 6.75 (95% CI 1.20-37.85) times greater likelihood of long-term dependence, respectively, than patients with a small postoperative PHE volume (≥ 10 to < 25 ml). CONCLUSIONS: A large postoperative PHE volume is an independent risk factor for functional dependence among basal ganglia hemorrhage patients after endoscopic evacuation, especially with postoperative PHE volume ≥ 50 ml.


Assuntos
Hemorragia dos Gânglios da Base , Humanos , Feminino , Prognóstico , Resultado do Tratamento , Estudos Retrospectivos , Hemorragia dos Gânglios da Base/diagnóstico por imagem , Hemorragia dos Gânglios da Base/cirurgia , Hemorragia Cerebral/cirurgia , Edema , Hematoma/diagnóstico por imagem , Hematoma/etiologia , Hematoma/cirurgia
12.
Neurol India ; 70(5): 1824-1829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352573

RESUMO

Background: Although the asterion has long been used as a skeletal surface marker of the transverse-sigmoid sinuses junction (TSSJ) point in the retrosigmoid approach, abundant evidence shows that the relationship between asterion and TSSJ point varies greatly. In recent years, new technologies have been developed, such as neuronavigation and three-dimensional volume rendering imaging, that can guide in exposing the TSSJ point individually. However, they are not only expensive but also difficult to apply in emergency surgery. Objective: To introduce a quick, practical, and low-cost new method for locating the TSSJ point precisely. Methods: In this retrospective before-after study, the test group located the TSSJ point with our new method during a 6-month period, while the control group used asterion as a surface landmark to estimate the TSSJ during the preceding 6 months. The primary outcome is the immediate exposure rate of the TSSJ point by the initial burr hole. Results: There were 60 patients in both control and test groups as no significant difference in the general clinical characteristics of both groups were observed. The new three-step method significantly increased the TSSJ exposure rate by initial burr hole compared with the control group (96.67% vs. 53.33%, P = 0.0002). Moreover, the total bone loss and craniotomy duration were significantly reduced by the new method. Incidence of sinus injury (10% vs. 6.6%), post-operation infection (3.33% vs. 3.33%), and CSF leakage (3.33% vs. 0%) were similar. Conclusions: The novel three-step approach accurately locates TSSJ points in retrosigmoid craniotomy, reduces bone defects, saves time, and does not increase the risk of sinus injury, infection, and CSF leakage.


Assuntos
Cavidades Cranianas , Craniotomia , Humanos , Estudos Retrospectivos , Estudos Controlados Antes e Depois , Cavidades Cranianas/diagnóstico por imagem , Cavidades Cranianas/cirurgia , Craniotomia/métodos , Imageamento por Ressonância Magnética
13.
Front Neurol ; 13: 1006227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330427

RESUMO

Objectives: Traumatic intracerebellar hematoma (TICH) is a very rare entity with a high morbidity and mortality rate, and there is no consensus on its optimal surgical management. In particular, whether and when to place external ventricle drainage in TICH patients without acute hydrocephalus pre-operation is still controversial. Methods: A single-institutional, retrospective analysis of total of 47 TICH patients with craniectomy hematoma evacuation in a tertiary medical center from January 2009 to October 2020 was performed. Primary outcomes were mortality in hospital and neurological function evaluated by GOS at discharge and 6 months after the ictus. Special attention was paid to the significance of external ventricular drainage (EVD) in TICH patients without acute hydrocephalus on admission. Results: Analysis of the clinical characteristics of the TICH patients revealed that the odds of use of EVD were seen in patients with IVH, fourth ventricle compression, and acute hydrocephalus. Placement of EVD at the bedside can significantly improve the GCS score before craniotomy, as well as the neurological score at discharge and 6 months. Compared with the only hematoma evacuation (HE) group, there is a trend that EVD can reduce hospital mortality and decrease the occurrence of delayed hydrocephalus, although the difference is not statistically significant. In addition, EVD can reduce the average NICU stay time, but has no effect on the total length of stay. Moreover, our data showed that EVD did not increase the risk of associated bleeding and intracranial infection. Interestingly, in terms of neurological function at discharge and 6 month after the ictus, even though without acute hydrocephalus on admission, the TICH patients can still benefit from EVD insertion. Conclusion: For TICH patients, perioperative EVD is safe and can significantly improve neurological prognosis. Especially for patients whose GCS dropped by more than 2 points before the operation, EVD can significantly improve the patient's GCS score, reduce the risk of herniation, and gain more time for surgical preparation. Even for TICH patients without acute hydrocephalus on admission CT scan, EVD placement still has positive clinical significance.

14.
J Clin Med ; 11(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431137

RESUMO

Objective: With a mortality rate of 10−30%, a moderate traumatic brain injury (mTBI) is one of the most variable traumas. The indications for intracranial pressure (ICP) monitoring in patients with mTBI and the effects of ICP on patients' outcomes are uncertain. The purpose of this study was to examine the indications of ICP monitoring (ICPm) and its effects on the long-term functional outcomes of mTBI patients. Methods: Patients with Glasgow Coma Scale (GCS) scores of 9−11 at Tangdu hospital, between January 2015 and December 2021, were enrolled and treated in this retrospective cohort study. We assessed practice variations in ICP interventions using the therapy intensity level (TIL). Six-month mortality and a Glasgow Outcome Scale Extended (GOS-E) score were the main outcomes. The secondary outcome was neurological deterioration (ND) events. The indication and the estimated impact of ICPm on the functional outcome were investigated by using binary regression analyses. Results: Of the 350 patients, 145 underwent ICP monitoring-assisted management, and the other 205 patients received a standard control based on imaging or clinical examinations. A GCS ≤ 10 (OR 1.751 (95% CI 1.216−3.023), p = 0.003), midline shift (mm) ≥ 2.5 (OR 3.916 (95% CI 2.076−7.386) p < 0.001), and SDH (OR 1.772 (95% CI 1.065−2.949) p = 0.028) were predictors of ICP. Patients who had ICPm (14/145 (9.7%)) had a decreased 6-month mortality rate compared to those who were not monitored (40/205 (19.5%), p = 0.011). ICPm was linked to both improved neurological outcomes at 6 months (OR 0.815 (95% CI 0.712−0.933), p = 0.003) and a lower ND rate (2 = 11.375, p = 0.010). A higher mean ICP (17.32 ± 3.52, t = −6.047, p < 0.001) and a more significant number of ICP > 15 mmHg (27 (9−45.5), Z = −5.406, p < 0.001) or ICP > 20 mmHg (5 (0−23), Z = −4.635, p < 0.001) 72 h after injury were associated with unfavorable outcomes. The best unfavorable GOS-E cutoff value of different ICP characteristics showed that the mean ICP was >15.8 mmHg (AUC 0.698; 95% CI, 0.606−0.789, p < 0.001), the number of ICP > 15 mmHg was >25.5 (AUC 0.681; 95% CI, 0.587−0.774, p < 0.001), and the number of ICP > 20 mmHg was >6 (AUC 0.660; 95% CI, 0.561−0.759, p < 0.001). The total TIL score during the first 72 h post-injury in the non-ICP group (9 (8, 11)) was lower than that of the ICP group (13 (9, 17), Z = −8.388, p < 0.001), and was associated with unfavorable outcomes. Conclusion: ICPm-assisted management was associated with better clinical outcomes six months after discharge and lower incidences of ND for seven days post-injury. A mean ICP > 15.8 mmHg, the number of ICP > 15 mmHg > 25.5, or the number of ICP > 20 mmHg > 6 implicate an unfavorable long-term prognosis after 72 h of an mTBI.

15.
Sci Adv ; 8(39): eabq2423, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179025

RESUMO

Blood-brain barrier (BBB) injury critically exacerbates the poor prognosis of patients with subarachnoid hemorrhage (SAH). The massively increased matrix metalloproteinases 9 (MMP-9) plays a deleterious role in BBB. However, the main source and mechanism of MMP-9 production after SAH remain unclear. We reported that the increased MMP-9 was mainly derived from reactive astrocytes after SAH. Ndrg2 knockout in astrocytes inhibited MMP-9 expression after SAH and attenuated BBB damage. Astrocytic Ndrg2 knockout decreased the phosphorylation of Smad2/3 and the transcription of MMP-9. Notably, cytoplasmic NDRG2 bound to the protein phosphatase PPM1A and restricted the dephosphorylation of Smad2/3. Accordingly, TAT-QFNP12, a novel engineered peptide that could block the NDRG2-PPM1A binding and reduce Smad2/3 dephosphorylation, decreased astrocytic MMP-9 production and BBB disruption after SAH. In conclusion, this study identified NDRG2-PPM1A signaling in reactive astrocytes as a key switch for MMP-9 production and provided a novel therapeutic avenue for BBB protection after SAH.


Assuntos
Hemorragia Subaracnóidea , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Proteínas/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
Front Cell Neurosci ; 16: 892197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783103

RESUMO

Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine-protein kinase, promotes neurons apoptosis in ischemic stroke and Alzheimer's disease (AD). We hypothesized that knockdown DAPK1 may play a protective role in traumatic brain injury (TBI) and explore underlying molecular mechanisms. ELISA, Western blotting, immunofluorescence, dual-luciferase assay, and Reverse Transcription and quantitative Polymerase Chain Reaction (RT-qPCR) were used to determine the mechanism for the role of DAPK1 in TBI. Open field and novel objective recognition tests examined motor and memory functions. The morphology and number of synapses were observed by transmission electron microscopy and Golgi staining. DAPK1 was mainly found in neurons and significantly increased in TBI patients and TBI mice. The dual-luciferase assay showed that DAPK1 was upregulated by miR-124 loss. The number of TUNEL+ cells, expression levels of cleaved caspase3 and p-NR2B/NR2B were significantly reduced after knocking-down DAPK1 or overexpressing miR-124 in TBI mice; and motor and memory dysfunction was recovered. After Tat-NR2B were injected in TBI mice, pathological and behavioral changes were mitigated while the morphology while the number of synapses were not affected. Overall, DAPK1 is a downstream target gene of miR-124 that regulates neuronal apoptosis in TBI mice via NR2B. What's more, DAPK1 restores motor and memory dysfunctions without affecting the number and morphology of synapses.

17.
J Clin Med ; 11(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35887760

RESUMO

Acute respiratory failure (ARF) with a high incidence among moderate-to-severe traumatic brain injury (M-STBI) patients plays a pivotal role in worsening neurological outcomes. Traumatic subarachnoid hemorrhage (tSAH) is highly prevalent in M-STBI, which is associated with significant adverse outcomes. In this retrospective cohort study, we aimed to explore the association between the severity of the tSAH and ARF in the M-STBI population. A total of 771 subjects were reviewed. Clinical and neuroimaging data of M-STBI patients were retrospectively collected, and ARF was ascertained retrospectively based on their electronic medical record. The degree of tSAH was classified according to Fisher's criteria, and the grade of tSAH was dichotomized to a low Fisher grade (Fisher grade 1-2) and a high Fisher grade (Fisher grade 3-4). After exclusion procedures, the data of 695 M-STBI patients were analyzed. A total of 284 (30.8%) had a high Fisher grade on admission. The overall rate of ARF within 48 h upon admission was 34.4% (239/695); it was 29.5% (142/481) and 46.3% (99/214) for the low and high Fisher groups, respectively. In a full cohort, a high Fisher grade was associated with ARF after adjusting for age, gender, GCS, smoking history, comorbidities, multiple injuries, characteristics of TBI, and pulmonary factors (OR 1.78; 95% CI, 1.11-2.85, p = 0.016). This result remained robust in the comparisons after PSM (71/132, 42.8% vs. 53/132, 31.9%; OR, 1.59; 95% CI, 1.02-2.49, p = 0.042). A high Fisher SAH grade exposure on admission is associated with ARF in M-STBI patients.

18.
Brain Sci ; 12(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35884645

RESUMO

To evaluate the potential effect of radiofrequency ablation and deep brain stimulation in patients with treatment-refractory Tourette syndrome (TS), this study enrolled thirteen patients with TS who were admitted to our hospital between August 2002 and September 2018. Four patients received a single- or multi-target radiofrequency ablation after local, potentiated, or general anesthesia; eight patients underwent deep brain stimulation (DBS) surgery; and one patient underwent both ablation and DBS surgery. The severity of tics and obsessive compulsive disorder symptoms and the quality of life were evaluated using the Yale Global Tic Severity Scale (YGTSS), Yale−Brown Obsessive Compulsive Scale (YBOCS), and Gilles de la Tourette Syndrome Quality of Life scale (GTS-QOL), respectively, before surgery, one month after surgery, and at the final follow-up after surgery, which was conducted in December 2018. A paired-sample t test and a multiple linear regression analysis were performed to analyze the data. All patients underwent the operation successfully without any severe complications. Overall, the YGTSS total scores at one month post-surgery (44.1 ± 22.3) and at the final visit (35.1 ± 23.7) were significantly decreased compared with those at baseline (75.1 ± 6.2; both p < 0.05). Additionally, the YBOCS scores at one month post-surgery (16.5 ± 10.1) and at the final visit (12.0 ± 9.5) were significantly decreased compared with those at baseline (22.5 ± 13.1; both p < 0.05). Furthermore, the GTS-QOL scores at one month post-surgery (44.0 ± 12.8) and at the final visit (31.0 ± 17.8) were significantly decreased compared with those at baseline (58.4 ± 14.2; both p < 0.05). Results from a multiple linear regression analysis revealed that the improvement in the YGTSS total score was independently associated with the improvement in the GTS-QOL score at one month post-surgery (standardized ß = 0.716, p = 0.023) and at the final visit (standardized ß = 1.064, p = 0.000). Conversely, changes in YBOCS scores did not correlate with changes in GTS-QOL scores (p > 0.05). Our results demonstrate that tics, psychiatric symptoms, and the quality of life in patients with intractable TS may be relieved by stereotactic ablation surgery and deep brain stimulation. Furthermore, it appears that the improvement in tics contributes more to the post-operative quality of life of patients than does the improvement in obsessive compulsive symptoms.

19.
Redox Biol ; 54: 102390, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35793583

RESUMO

Mitochondrial dysfunction and oxidative injury, which contribute to worsening of neurological deficits and poor clinical outcomes, are hallmarks of secondary brain injury after TBI. Adiponectin (APN), beyond its well-established regulatory effects on metabolism, is also essential for maintaining normal brain functions by binding APN receptors that are ubiquitously expressed in the brain. Currently, the significance of the APN/APN receptor (AdipoR) signaling pathway in secondary injury after TBI and the specific mechanisms have not been conclusively determined. In this study, we found that APN knockout aggravated brain functional deficits, increased brain edema and lesion volume, and exacerbated oxidative stress as well as apoptosis after TBI. These effects were significantly alleviated after APN receptor agonist (AdipoRon) treatment. Moreover, we found that AdipoR1, rather than AdipoR2, mediated the protective effects of APN/AdipoR signaling against oxidative stress and brain injury after TBI. In neuron-specific AdipoR1 knockout mice, mitochondrial damage was more severe after TBI, indicating a potential association between APN/AdipoR1 signaling inactivation and mitochondrial damage. Mechanistically, neuron-specific knockout of SIRT3, the most important deacetylase in the mitochondria, reversed the neuroprotective effects of AdipoRon after TBI. Then, PRDX3, a critical antioxidant enzyme in the mitochondria, was identified as a vital downstream target of the APN/SIRT3 axis to alleviate oxidative injury after TBI. Finally, we revealed that APN/AdipoR1 signaling promotes SIRT3 transcription by activating the AMPK-PGC pathway. In conclusion, APN/AdipoR1 signaling plays a protective role in post-TBI oxidative damage by restoring the SIRT3-mediated mitochondrial homeostasis and antioxidant system.


Assuntos
Lesões Encefálicas Traumáticas , Mitocôndrias , Estresse Oxidativo , Receptores de Adiponectina , Sirtuína 3 , Adiponectina/genética , Adiponectina/metabolismo , Animais , Antioxidantes/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo
20.
Sci Rep ; 12(1): 11711, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810209

RESUMO

The self-administration (SA) model represents one of the most important and classic methods for drug addiction, and jugular vein catheterization is one of the most critical techniques in this animal model. We aimed to explore an optimized scheme to improve the success rate of rat jugular vein catheterization and SA model. Our experiment provided an optimized scheme which including numerous details, materials, approaches, updated techniques and protocols. Our experimental group consisted of 120 adult male Sprague-Dawley rats, which were divided into the Traditional Operation group (TO group) and the Optimized Operation group (OO group) by the random number table method and then further individually divided into the Saline Training group and the Cocaine Training group for the following SA training. Our results showed that the success rate of the jugular vein catheterization in the OO group was significantly greater than that in the TO group (93.33% vs 46.67%, χ2 = 31.11, P < 0.001). The optimized jugular vein catheterization could make the SA model more stable, reliable and efficient than the traditional operation. Compared with traditional methods, our optimized scheme made numerous improvements in materials and techniques including uniformity, individualized variability of the S-type positioning nail, the length and connection matching, the shape of the end and low cost. Our optimized scheme could provide a more stable and efficient tool for basic research on drug addiction. Several subtle improvements under our personal experience are usually important for augmenting operational efficiency.


Assuntos
Cateterismo Venoso Central , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cateterismo Venoso Central/métodos , Veias Jugulares , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...