Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(14): 4058-4061, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008776

RESUMO

A near-resonant excitation strategy is proposed and implemented in a 4-µm-thick GaN microcavity to realize an exciton-polariton condensate/lasing with low threshold. Strong exciton-photon coupling is demonstrated, and polariton lasing is realized with an ultra-low threshold excitation power density of about 13.3 W/cm2 at room temperature. Such an ultra-low threshold is ascribed to the implementation of the near-resonant optical excitation strategy, which enables acceleration of the exciton and polariton relaxation and suppression of the heat generation in the cavity, thereby reducing the energy loss and enhance the cavity excitation efficiency.

2.
Small ; 20(13): e2306068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963834

RESUMO

Optoelectronic synapses are currently drawing significant attention as fundamental building blocks of neuromorphic computing to mimic brain functions. In this study, a two-terminal synaptic device based on a doped PdSe2 flake is proposed to imitate the key neural functions in an optical pathway. Due to the wavelength-dependent desorption of oxygen clusters near the intrinsic selenide vacancy defects, the doped PdSe2 photodetector achieves a high negative photoresponsivity of -7.8 × 103 A W-1 at 473 nm and a positive photoresponsivity of 181 A W-1 at 1064 nm. This wavelength-selective bi-direction photoresponse endows an all-optical pathway to imitate the fundamental functions of artificial synapses on a device level, such as psychological learning and forgetting capability, as well as dynamic logic functions. The underpinning photoresponse is further demonstrated on a flexible platform, providing a viable technology for neuromorphic computing in wearable electronics. Furthermore, the p-type doping results in an effective increase of the channel's electrical conductivity and a significant reduction in power consumption. Such low-power-consuming optical synapses with simple device architecture and low-dimensional features demonstrate tremendous promise for building multifunctional artificial neuromorphic systems in the future.

3.
Nano Lett ; 23(20): 9522-9528, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823381

RESUMO

Constructing high-quality homojunctions plays a pivotal role for the advancement of two-dimensional transition metal sulfide (TMDC) based optoelectronic devices. Here, a lateral PdSe2 p-i-n homojunction is constructed by electrostatic doping. Electrical measurements reveal that the homojunction diode exhibits a strong rectifying characteristic with a rectification ratio exceeding 104 and an ideality factor approaching 1. When functioning in photovoltaic mode, the device achieves a high responsivity of 1.1 A/W under 1064 nm illumination, with a specific detectivity of 1.3 × 1011 Jones and a high linearity of 45 dB. Benefiting from the lateral p-i-n structure, the junction capacitance is significantly reduced, and an ultrafast response (3/6 µs) is obtained. Additionally, the photodiode has the capability of polarization distinction due to the unique in-plane anisotropic structure of PdSe2, exhibiting a dichroic ratio of 1.6 at a 1064 nm wavelength. This high-performance polarization-sensitive near-infrared photodetector exhibits great potential in the next-generation optoelectronic applications.

4.
Nat Mater ; 22(7): 853-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349395

RESUMO

III-nitride wide bandgap semiconductors are promising materials for modern optoelectronics and electronics. Their application has progressed greatly thanks to the continuous quality improvements of heteroepitaxial films grown on large-lattice-mismatched foreign substrates. But compared with bulk single crystals, there is still tremendous room for the further improvement of the material quality. Here we show a paradigm to achieve high-quality III-nitride heteroepitaxial films by the controllable discretization and coalescence of columns. By adopting nano-patterned AlN/sapphire templates with regular hexagonal holes, discrete AlN columns coalesce with uniform out-of-plane and in-plane orientations guaranteed by sapphire nitridation pretreatment and the ordered lateral growth of cleavage facets, which efficiently suppresses the regeneration of threading dislocations during coalescence. The density of dislocation etch pits in the AlN heteroepitaxial film reaches 3.3 × 104 cm-2, close to the present available AlN bulk single crystals. This study facilitates the growth of bulk-class quality III-nitride films featuring low cost and scalability.


Assuntos
Óxido de Alumínio , Eletrônica , Semicondutores , Software
5.
Light Sci Appl ; 11(1): 262, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36068199

RESUMO

Contrary to the common belief that the light-induced halide ion segregation in a mixed halide alloy occurs within the illuminated area, we find that the Br ions released by light are expelled from the illuminated area, which generates a macro/mesoscopic size anion ring surrounding the illuminated area, exhibiting a photoluminescence ring. This intriguing phenomenon can be explained as resulting from two counter-balancing effects: the outward diffusion of the light-induced free Br ions and the Coulombic force between the anion deficit and surplus region. Right after removing the illumination, the macro/mesoscopic scale ion displacement results in a built-in voltage of about 0.4 V between the ring and the center. Then, the displaced anions return to the illuminated area, and the restoring force leads to a damped ultra-low-frequency oscillatory ion motion, with a period of about 20-30 h and lasting over 100 h. This finding may be the first observation of an ionic plasma oscillation in solids. Our understanding and controlling the "ion segregation" demonstrate that it is possible to turn this commonly viewed "adverse phenomenon" into novel electronic applications, such as ionic patterning, self-destructive memory, and energy storage.

6.
Adv Sci (Weinh) ; 9(22): e2106028, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652490

RESUMO

Thermal sublimation, a specific method to fabricate semiconductor nanowires, is an effective way to understand growth behavior as well. Utilizing a high-resolution transmission electron microscope (TEM) with in situ heating capability, the lattice-asymmetry-driven anisotropic sublimation behavior is demonstrated of wurtzite GaN: sublimation preferentially occurs along the [ 000 1 ¯ $000\bar{1}$ ] and [0001] directions in both GaN thin films and nanowires. Hexagonal pyramidal nanostructures consisting of six semipolar { 1 1 ¯ 01 } $\{ {1\bar{1}01} \}$ planes and one (000 1 ¯ $\bar{1}$ ) plane with the apex pointing to the [0001] direction are generated as a sublimation-induced equilibrium crystal structure, which is consistent with the lattice-asymmetry-driven growth behaviors in wurtzite GaN. These findings offer a new insight into the thermal stability of wurtzite GaN and provide essential background for tailoring the structure of III-nitrides for atomic-scale manufacturing.

7.
Light Sci Appl ; 11(1): 71, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35322013

RESUMO

Solving the doping asymmetry issue in wide-gap semiconductors is a key difficulty and long-standing challenge for device applications. Here, a desorption-tailoring strategy is proposed to juggle the carrier concentration and transport. Specific to the p-doping issue in Al-rich AlGaN, self-assembled p-AlGaN superlattices with an average Al composition of over 50% are prepared by adopting this approach. The hole concentration as high as 8.1 × 1018 cm-3 is thus realized at room temperature, which is attributed to the significant reduction of effective Mg activation energy to 17.5 meV through modulating the activating path, as well as the highlighted Mg surface-incorporation by an intentional interruption for desorption. More importantly, benefiting from the constant ultrathin barrier thickness of only three monolayers via this approach, vertical miniband transport of holes is verified in the p-AlGaN superlattices, greatly satisfying the demand of hole injection in device application. 280 nm deep-ultraviolet light-emitting diodes are then fabricated as a demo with the desorption-tailored Al-rich p-AlGaN superlattices, which exhibit a great improvement of the carrier injection efficiency and light extraction efficiency, thus leading to a 55.7% increase of the light output power. This study provides a solution for p-type doping of Al-rich AlGaN, and also sheds light on solving the doping asymmetry issue in general for wide-gap semiconductors.

8.
Adv Mater ; 34(19): e2109765, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297518

RESUMO

Deep-ultraviolet (DUV) solar-blind communication (SBC) shows distinct advantages of non-line-of-sight propagation and background noise negligibility over conventional visible-light communication. AlGaN-based DUV micro-light-emitting diodes (µ-LEDs) are an excellent candidate for a DUV-SBC light source due to their small size, low power consumption, and high modulation bandwidth. A long-haul DUV-SBC system requires the light source exhibiting high output power, high modulation bandwidth, and high rate, simultaneously. Such a device is rarely reported. A parallel-arrayed planar (PAP) approach is here proposed to satisfy those requirements. By reducing the dimensions of the active emission mesa to micrometer scale, DUV µ-LEDs with ultrahigh power density are created due to their homogeneous injection current and enhanced planar isotropic light emission. Interconnected PAP µ-LEDs with a diameter of 25 µm are produced. This device has an output power of 83.5 mW with a density of 405 W cm-2 at 230 mA, a wall-plug efficiency (WPE) of 4.7% at 155 mA, and a high -3 dB modulation bandwidth of 380 MHz. The remarkable high output power and efficiency make those devices a reliable platform to develop high-modulation-bandwidth wireless communication and to meet the requirements for bio-elimination.

9.
Fundam Res ; 2(5): 794-798, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38933130

RESUMO

Near-infrared stimulated emission from a high-quality InN layer under optical pumping was observed with a threshold excitation power density of 0.3 and 4 kW cm-2 at T = 8 and 77 K, respectively. To achieve such a low threshold power density, vicinal GaN substrates were used to reduce the edge-component threading dislocation (ETD) density of the InN film. Cross-sectional transmission electron microscopy images reveal that the annihilation of ETDs can be divided into two steps, and the ETD density can be reduced to approximately 5 × 108 cm-2 near the surface of the 5-µm-thick film. The well-resolved phonon replica of the band-to-band emission in the photoluminescence spectra at 9 K confirm the high quality of the InN film. As a result, the feasibility of InN-based photonic structures and the underlying physics of their growth and emission properties are demonstrated.

10.
Light Sci Appl ; 9: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963771

RESUMO

We identify and characterize a novel type of quantum emitter formed from InGaN monolayer islands grown using molecular beam epitaxy and further isolated via the fabrication of an array of nanopillar structures. Detailed optical analysis of the characteristic emission spectrum from the monolayer islands is performed, and the main transmission is shown to act as a bright, stable, and fast single-photon emitter with a wavelength of ~400 nm.

11.
Adv Sci (Weinh) ; 7(13): 1903400, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32670748

RESUMO

III-nitride wide bandgap semiconductors are favorable materials for developing room temperature spintronic devices. The effective manipulation of spin dynamics is a critical request to realize spin field-effect transistor (FET). In this work, the dependence of the spin relaxation time on external strain-induced polarization electric field is investigated in InGaN/GaN multiple quantum wells (MQWs) by time-resolved Kerr rotation spectroscopy. Owing to the almost canceled two different spin-orbit coupling (SOC), the spin relaxation time as long as 311 ps in the MQWs is obtained at room temperature, being much longer than that in bulk GaN. Furthermore, upon applying an external uniaxial strain, the spin relaxation time decreases sensitively, which originates from the breaking of the SU(2) symmetry. The extracted ratio of the SOC coefficients shows a linear dependence on the external strain, confirming the essential role of the polarization electric field. This effective manipulation of the spin relaxation time sheds light on GaN-based nonballistic spin FET working at room temperature.

12.
RSC Adv ; 10(21): 12547-12553, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497583

RESUMO

Spin relaxation, affected by interfacial effects, is a critical process for electrical spin injection and transport in semiconductor-based spintronics. In this work, the electrical spin injection into n-GaN via n-GaN/MgO/Co tunnel barrier was realized, and the interface-related spin relaxation was investigated by both electrical Hanle effect measurement and time-resolved Kerr rotation (TRKR) spectrum. It was found that the spin relaxation caused by interfacial random magnetostatic field was nearly equal to the intrinsic contributions at low temperature (less than 80 K) and could be suppressed by smoother n-GaN/Co interface. When the interfacial random magnetostatic field was suppressed, the spin relaxation time extracted from the electrical injection process was still shorter than that in bulk conduction band, which was attributed to Rashba spin-orbit coupling (SOC) induced by the interface band bending in the depletion region. Due to thermal activation, luckily, the spin relaxation induced by the interfacial Rashba SOC was suppressed at temperatures higher than 50 K. These results illustrate that (1) spin relaxation time could be as long as 300 ps for GaN and (2) the influences of interfacial effects could be engineered to further prolong spin relaxation time, both of which shed lights on GaN-based spintronic devices with direct and wide bandgap.

13.
ACS Nano ; 13(8): 9325-9331, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31322851

RESUMO

Two-dimensional transition metal dichalcogenides possess the K (K') valley degree of freedom (DOF). Based on that, the research on valleytronics draws considerable attention. In this report, by breaking the spatial-inversion symmetry by an out-of-plane electric field, the valley Hall effect (VHE) is observed in multilayer tungsten diselenide (WSe2) at room temperature. The non-zero Berry curvature emerges, leading to the carriers at K (K') valley being deflected to the opposite sides of the channel, giving rise to a spatial polarization of carriers at K (K') valleys in multilayer WSe2. This observation of the VHE illustrates that the K (K') valley DOF can be generated in multilayer WSe2, which makes it an alternative candidate for valleytronics.

14.
Phys Rev Lett ; 121(14): 145505, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339427

RESUMO

Carbon (C) doping is essential for producing semi-insulating GaN for power electronics. However, to date the nature of C doped GaN, especially the lattice site occupation, is not yet well understood. In this work, we clarify the lattice site of C in GaN using polarized Fourier-transform infrared and Raman spectroscopies, in combination with first-principles calculations. Two local vibrational modes (LVMs) at 766 and 774 cm^{-1} in C doped GaN are observed. The 766 cm^{-1} mode is assigned to the nondegenerate A_{1} mode vibrating along the c axis, whereas the 774 cm^{-1} mode is ascribed to the doubly degenerate E mode confined in the plane perpendicular to the c axis. The two LVMs are identified to originate from isolated C_{N}^{-} with local C_{3v} symmetry. Experimental data and calculations are in outstanding agreement both for the positions and the intensity ratios of the LVMs. We thus provide unambiguous evidence of the substitutional C atoms occupying the N site with a -1 charge state in GaN and therefore bring essential information to a long-standing controversy.

15.
Adv Sci (Weinh) ; 5(9): 1800844, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250812

RESUMO

Due to the intrinsic spontaneous and piezoelectric polarization effect, III-nitride semiconductor heterostructures are promising candidates for generating 2D electron gas (2DEG) system. Among III-nitrides, InN is predicted to be the best conductive-channel material because its electrons have the smallest effective mass and it exhibits large band offsets at the heterointerface of GaN/InN or AlN/InN. Until now, that prediction has remained theoretical, due to a giant gap between the optimal growth windows of InN and GaN, and the difficult epitaxial growth of InN in general. The experimental realization of 2DEG at an InGaN/InN heterointerface grown by molecular beam epitaxy is reported here. The directly probed electron mobility and the sheet electron density of the InGaN/InN heterostructure are determined by Hall-effect measurements at room temperature to be 2.29 × 103 cm2 V-1 s-1 and 2.14 × 1013 cm-2, respectively, including contribution from the InN bottom layer. The Shubnikov-de Haas results at 3 K confirm that the 2DEG has an electron density of 3.30 × 1012 cm-2 and a quantum mobility of 1.48 × 103 cm2 V-1 s-1. The experimental observations of 2DEG at the InGaN/InN heterointerface have paved the way for fabricating higher-speed transistors based on an InN channel.

16.
Opt Express ; 25(24): 30664-30671, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221094

RESUMO

Intense emission from an InGaN quantum disc (QDisc) embedded in a GaN nanowire p-n junction is directly resolved by performing cathodoluminescence spectroscopy. The luminescence observed from the p-type GaN region is exclusively dominated by the emission at 380 nm, which has been usually reported as the emission from Mg induced impurity bands. Here, we confirm that the robust emission from 380 nm is actually not due to the Mg induced impurity bands, but rather due to being the recombination between electrons in the QDisc and holes in the p-type GaN. This identification helps to get a better understanding of the confused luminescence from nanowires with thin QDiscs embedded for fabricating electrically driven single photon emitters.

17.
Sci Adv ; 3(11): e1700162, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29119136

RESUMO

Monolayer MoS2 is a promising material for optoelectronics applications owing to its direct bandgap, enhanced Coulomb interaction, strong spin-orbit coupling, unique valley pseudospin degree of freedom, etc. It can also be implemented for novel spintronics and valleytronics devices at atomic scale. The band structure of monolayer MoS2 is well known to have a direct gap at K (K') point, whereas the second lowest conduction band minimum is located at Λ point, which may interact with the valence band maximum at K point, to make an indirect optical bandgap transition. We experimentally demonstrate the direct-to-indirect bandgap transition by measuring the photoluminescence spectra of monolayer MoS2 under hydrostatic pressure at room temperature. With increasing pressure, the direct transition shifts at a rate of 49.4 meV/GPa, whereas the indirect transition shifts at a rate of -15.3 meV/GPa. We experimentally extract the critical transition point at the pressure of 1.9 GPa, in agreement with first-principles calculations. Combining our experimental observation with first-principles calculations, we confirm that this transition is caused by the K-Λ crossover in the conduction band.

18.
Sci Rep ; 7(1): 2358, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539668

RESUMO

We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.

19.
Sci Rep ; 7: 46420, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28417975

RESUMO

We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1-xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices.

20.
Sci Rep ; 7: 42974, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225042

RESUMO

Magnetic transport spectroscopy is investigated in quantum point contacts (QPCs) fabricated in Al0.25Ga0.75N/GaN heterostructures. The magnetic field perpendicular to the two-dimensional electron gas (2DEG) is shown to depopulate the quasi-one-dimensional energy levels in the first two-dimensional (2D) subband faster than those in the second one. In GaN based heterostructures, the energy levels in the second 2D subband is generally concealed in the fast course of depletion and hence rarely detected. The perpendicular magnetic field facilitates the observation of the second 2D subband, and provides a method to study the properties of these energy levels. A careful analysis on the rate of the magnetic depletion with respect to the level index and confinement is carried out, from which the profile of the lateral confinement in GaN based QPCs is found to be triangular. The stability diagram at T shows the energy separation between the first and second 2D subband to be in the range of 32 to 42 meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...