Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsyst Nanoeng ; 9: 86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435566

RESUMO

Micron- and submicron-sized droplets have extensive applications in biomedical diagnosis and drug delivery. Moreover, accurate high-throughput analysis requires a uniform droplet size distribution and high production rates. Although the previously reported microfluidic coflow step-emulsification method can be used to generate highly monodispersed droplets, the droplet diameter (d) is constrained by the microchannel height (b), d≳3b, while the production rate is limited by the maximum capillary number of the step-emulsification regime, impeding emulsification of highly viscous liquids. In this paper, we report a novel, gas-assisted coflow step-emulsification method, where air serves as the innermost phase of a precursor hollow-core air/oil/water emulsion. Air gradually diffuses out, producing oil droplets. The size of the hollow-core droplets and the ultrathin oil layer thickness both follow the scaling laws of triphasic step-emulsification. The minimal droplet size attains d≈1.7b, inaccessible in standard all-liquid biphasic step-emulsification. The production rate per single channel is an order-of-magnitude higher than that in the standard all-liquid biphasic step-emulsification and is also superior to alternative emulsification methods. Due to low gas viscosity, the method can also be used to generate micron- and submicron-sized droplets of high-viscosity fluids, while the inert nature of the auxiliary gas offers high versatility.

2.
Lab Chip ; 21(8): 1613-1622, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33683225

RESUMO

Double emulsions with ultrathin shells are important in some biomedical applications, such as controlled drug release. However, the existing production techniques require two or more manipulation steps, or more complicated channel geometry, to form thin-shell double emulsions. This work presents a novel microfluidic tri-phasic step-emulsification device, with an easily fabricated double-layer PDMS channel, for production of oil-in-oil-in-water and water-in-water-in-oil double emulsions in a single step. The shell thickness is controlled by the flow rates and can reach 1.4% of the µm-size droplet diameter. Four distinct emulsification regimes are observed depending on the experimental conditions. A theoretical model for the tri-phasic step-emulsification is proposed to predict the boundaries separating the four regimes of emulsification in plane of two dimensionless capillary numbers, Ca. The theory yields two coupled nonlinear differential equations that can be solved numerically to find the approximate shape of the free interfaces in the shallow (Hele-Shaw) microfluidic channel. This approximation is then used as the initial guess for the more accurate finite element method solution, showing very good agreement with the experimental findings. This study demonstrates the feasibility of co-flow step-emulsification as a promising method to production of double (and multiple) emulsions and micro-capsules with ultrathin shells of controllable thickness.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987112

RESUMO

In this work, a facile two-step strategy is adopted to construct hierarchical polyaniline/NiCo-layered double hydroxide (PANI/NiCo-LDH) core-shell composite nanofiber networks on carbon cloth (CC). Three-dimensional (3D) porous PANI nanofiber networks are firstly uniformly anchored on CC by in-situ oxidative polymerization, followed by growth of NiCo-LDH nanoflakes on the crosslinked PANI framework via electrochemical deposition. The morphology and electrochemical properties of PANI/NiCo-LDH composites are controlled by the deposition time of LDH. Benefiting from rapid electron transport and ion diffusion, the well-defined PANI/NiCo-LDH hierarchical composite with 200 s deposition of LDH delivers a large capacitance of 1845 F g-1 at 0.5 A g-1 and excellent cycling stability of 82% capacitance retention after 5000 cycles at a very high current density of 10.0 A g-1. Furthermore, an asymmetric supercapacitor (ASC) assembled with PANI/NiCo-LDH as a positive electrode and activated carbon (AC) as a negative electrode exhibits a high capacitance of 147.2 F g-1 in a potential range from 0 to 1.5 V and superior energy density of 46.0 Wh kg-1 at a power density of 351.6 W kg-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...