Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22233, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097677

RESUMO

The indiscriminate use of nitrogen fertiliser (NF) is a obstruction to improve soil quality and crop yields. However, the effect of biochar and NF on soil microbial ecosystem (SME) and crop yields is unknown. A five-year field experiment in China aimed to evaluate the effects of biochar and nitrogen fertiliser (NF) combination on soil structure, C-to-N ratio (CNR), microbial biomass, and spring maize yield. Biochar and NF were applied at different rates, and the combined application resulted in a soil solid-liquid-gas ratio closer to the ideal value. The use of biochar alone and in combination with NF significantly increased soil's C, N, and CNR. A moderate application of biochar and NF resulted in favourable biological and chemical properties of the soil. The application of biochar and NF at moderate levels led to an increase in SME, with the B8N150 producing the highest yield. The highest yield of B8N150 represents a 24.25% increase compared to the unfertilized control and a 9.04% increase compared to B0N150. Moderate use of biochar and NF could be beneficial in areas with similar climatic conditions.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Fertilizantes , Ecossistema , Nitrogênio/análise , Carvão Vegetal/química , Agricultura/métodos
2.
Genomics Proteomics Bioinformatics ; 18(4): 397-414, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33385613

RESUMO

De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.


Assuntos
Plântula , Zea mays , Estiolamento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Plântula/genética , Plântula/metabolismo , Zea mays/genética , Zea mays/metabolismo
3.
J Plant Physiol ; 198: 116-28, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27176136

RESUMO

To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Proteômica/métodos , Plântula/metabolismo , Zea mays/metabolismo , Eletroforese em Gel Bidimensional , Fotossíntese
4.
Mol Biol Rep ; 41(5): 3431-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24700167

RESUMO

Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.


Assuntos
Germinação , Proteoma , Proteômica , Sementes/metabolismo , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Metabolismo Energético , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Proteômica/métodos , Tolerância ao Sal/genética , Sementes/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Zea mays/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...