Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37432818

RESUMO

Extracting invariant representations in unlabeled electrocardiogram (ECG) signals is a challenge for deep neural networks (DNNs). Contrastive learning is a promising method for unsupervised learning. However, it should improve its robustness to noise and learn the spatiotemporal and semantic representations of categories, just like cardiologists. This article proposes a patient-level adversarial spatiotemporal contrastive learning (ASTCL) framework, which includes ECG augmentations, an adversarial module, and a spatiotemporal contrastive module. Based on the ECG noise attributes, two distinct but effective ECG augmentations, ECG noise enhancement, and ECG noise denoising, are introduced. These methods are beneficial for ASTCL to enhance the robustness of the DNN to noise. This article proposes a self-supervised task to increase the antiperturbation ability. This task is represented as a game between the discriminator and encoder in the adversarial module, which pulls the extracted representations into the shared distribution between the positive pairs to discard the perturbation representations and learn the invariant representations. The spatiotemporal contrastive module combines spatiotemporal prediction and patient discrimination to learn the spatiotemporal and semantic representations of categories. To learn category representations effectively, this article only uses patient-level positive pairs and alternately uses the predictor and the stop-gradient to avoid model collapse. To verify the effectiveness of the proposed method, various groups of experiments are conducted on four ECG benchmark datasets and one clinical dataset compared with the state-of-the-art methods. Experimental results showed that the proposed method outperforms the state-of-the-art methods.

2.
Front Physiol ; 12: 727210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975516

RESUMO

Remote ECG diagnosis has been widely used in the clinical ECG workflow. Especially for patients with pacemaker, in the limited information of patient's medical history, doctors need to determine whether the patient is wearing a pacemaker and also diagnose other abnormalities. An automatic detection pacing ECG method can help cardiologists reduce the workload and the rates of misdiagnosis. In this paper, we propose a novel autoencoder framework that can detect the pacing ECG from the remote ECG. First, we design a memory module in the traditional autoencoder. The memory module is to record and query the typical features of the training pacing ECG type. The framework does not directly feed features of the encoder into the decoder but uses the features to retrieve the most relevant items in the memory module. In the training process, the memory items are updated to represent the latent features of the input pacing ECG. In the detection process, the reconstruction data of the decoder is obtained by the fusion features in the memory module. Therefore, the reconstructed data of the decoder tends to be close to the pacing ECG. Meanwhile, we introduce an objective function based on the idea of metric learning. In the context of pacing ECG detection, comparing the error of objective function of the input data and reconstructed data can be used as an indicator of detection. According to the objective function, if the input data does not belong to pacing ECG, the objective function may get a large error. Furthermore, we introduce a new database named the pacing ECG database including 800 patients with a total of 8,000 heartbeats. Experimental results demonstrate that our method achieves an average F1-score of 0.918. To further validate the generalization of the proposed method, we also experiment on a widely used MIT-BIH arrhythmia database.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...