Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38918298

RESUMO

Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.

2.
J Agric Food Chem ; 72(4): 2250-2262, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235718

RESUMO

This study explores the structural characterization of six noncovalent polyphenol-starch complexes and their prebiotic activities during in vitro digestion and fermentation. Ferulic acid, caffeic acid, gallic acid, isoquercetin, astragalin, and hyperin were complexed with sweet potato starch (SPS). The polyphenols exhibited high binding capacity (>70%) with SPS. A partial release of flavonoids from the complexes was observed via in vitro digestion, while the phenolic acids remained tightly bound. Molecular dynamics (MD) simulation revealed that polyphenols altered the spatial configuration of polysaccharides and intramolecular hydrogen bonds formed. Additionally, polyphenol-SPS complexes exerted inhibitory effects on starch digestion compared to gelatinized SPS, owing to the increase in resistant starch fraction. It revealed that the different complexes stimulated the growth of Lactobacillus rhamnosus and Bifidobacterium bifidum, while inhibiting the growth of Escherichia coli. Moreover, in vitro fermentation experiments revealed that complexes were utilized by the gut microbiota, resulting in the production of short-chain fatty acids and a decrease in pH. In addition, the polyphenol-SPS complexes altered the composition of gut microbiota by promoting the growth of beneficial bacteria and decreasing pathogenic bacteria. Polyphenol-SPS complexes exhibit great potential for use as a prebiotic and exert dual beneficial effects on gut microbiota.


Assuntos
Polifenóis , Amido , Polifenóis/química , Amido/química , Prebióticos/análise , Fermentação , Ácidos Graxos Voláteis/metabolismo , Digestão
3.
IEEE Trans Pattern Anal Mach Intell ; 46(2): 764-779, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37930907

RESUMO

Image captioning is a core challenge in computer vision, attracting significant attention. Traditional methods prioritize caption quality, often overlooking style control. Our research enhances method controllability, enabling descriptions of varying detail. By integrating a length level embedding into current models, they can produce detailed or concise captions, increasing diversity. We introduce a length-level reranking transformer to correlate image and text complexity, optimizing caption length for informativeness without redundancy. Additionally, with caption length increase, computational complexity grows due to the autoregressive (AR) design of existing methods. To address this, our non-autoregressive (NAR) model maintains constant complexity regardless of caption length. We've developed a training approach that includes refinement sequence training and sequence-level knowledge distillation to close the performance gap between NAR and AR models. In testing, our models set new standards for caption quality on the MS COCO dataset and offer enhanced controllability and diversity. Our NAR model excels over AR models in these aspects and shows greater efficiency with longer captions. With advanced training techniques, our NAR's caption quality rivals that of leading AR models.

4.
J Hazard Mater ; 455: 131619, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207484

RESUMO

Supercritical water gasification (SCWG) technology can convert oily sludge into hydrogen-rich gas. To achieve high gasification efficiency of oily sludge with a high oil concentration under mild conditions, a two-step method involving a desorption process and a catalytic gasification process using Raney-Ni catalyst was investigated. High oil removal efficiency (99.57%) and carbon gasification efficiency (93.87%) were achieved. The lowest wastewater total organic carbon, oil content, and carbon content in the solid residues were 4.88 ppm, 0.08% and 0.88%, respectively, using a gasification temperature of 600 °C, treatment concentration of 1.11 wt%, gasification time of 70.7 s, and the optimal desorption temperature of 390 °C. The main organic carbon component in the solid residues was cellulose, which is environmentally safe. As the treatment concentration increased, the two-step method outperformed the single-step method. The mechanism for the two-step SCWG of oily sludge was revealed. In the first step, supercritical water is used in the desorption unit to achieve a high oil removal efficiency with few liquid products generated. In the second step, the Raney-Ni catalyst promotes efficient gasification of high-concentration oil at a low temperature. This research provides valuable insights into the effective SCWG of oily sludge at a low temperature.

5.
Food Chem ; 406: 135007, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36473390

RESUMO

Bioaccessibility and bioactivity of flavonoids in lotus leaves are related to their characteristics in gastrointestinal digestion and colonic fermentation. The aim of this study is to investigate the stability of lotus leaf flavonoids (LLF) in simulated gastrointestinal digestion, and its modulation on gut microbiota in vitro fermentation. Results showed that LLF mainly consisted of quercetin-3-O-galactoside, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, and kaempferol-3-O-glucoside. These flavonoids kept stability with only a small fraction degraded in simulated gastric and intestinal fluids. In vitro fermentation, LLF stimulated the growth of Actinobacteria and Firmicutes, inhibited the growth of Proteobacteria, and induced the production of fermentation gases and short-chain fatty acids. Interestingly, supplementation of soluble starch significantly improved the utilization of LLF by the intestinal flora. These results revealed that LLF shaped a unique biological web with Lactobacillus and Bifidobacterium spp. as the core of the biological network, which would be more beneficial to gut health.


Assuntos
Digestão , Flavonoides , Flavonoides/análise , Fermentação , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Folhas de Planta/química
6.
CNS Neurol Disord Drug Targets ; 22(10): 1507-1517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36154609

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the most common irreversible degenerative diseases of the central nervous system. Recent studies have found that patients with AD generally experience abnormal glucose metabolism. Xylitol is a functional sugar alcohol, which has been reported to regulate glucose metabolism. OBJECTIVE: The present study was designed to determine whether xylitol can alleviate cognitive impairment in AD mice. METHODS: In the current research, 5% xylitol was supplemented in the diet to treat APP/PS1 transgenic AD mice for 2 months. Cognitive ability was measured by the Morris water maze, and anxiety-like behaviors were examined by open-field experiment. Hippocampal cellular apoptosis and mitochondria pathway related apoptotic proteins were tested by TUNEL staining and immunoblotting, respectively. By LC-MS, plasma levels of glucose metabolism intermediates and related amino acids were evaluated. RESULTS: Results showed that xylitol could significantly ameliorate anxiety-like activity in AD mice by partially regulating expression levels of mitochondrial pathway-related apoptotic proteins. Xylitolregulated glucose metabolism may play an important role in the process. CONCLUSION: The current study suggests that xylitol may be a potential candidate for improving neuropsychiatric behavior in AD by regulating the levels of TCA cycle intermediates and related amino acids in glucose metabolism.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Xilitol/uso terapêutico , Aminoácidos , Camundongos Transgênicos , Glucose , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide
7.
Food Chem ; 399: 133999, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037688

RESUMO

Melastoma dodecandrum Lour. (MDL) extracts have shown potent α-glucosidase inhibitory activity, suggesting MDL might be a good source of α-glucosidase inhibitors. The aim of the study was to identify compounds in MDL extracts with α-glucosidase inhibitory activities and evaluate their effect on postprandial blood glucose as well as elucidating the underlying mechanisms of inhibition. A total of 34 polyphenols were identified in MDL fruits, among which 10 anthocyanins and three proanthocyanidin derivatives were discovered for the first time. Dosing mice with MDL extracts (100 mg/kg body weight, by gavage) was associated with a significantly decrease in postprandial blood glucose concentrations after oral administration of maltose. The most potent α-glucosidase inhibitor was identified as casuarictin (IC50 of 0.21 µg/mL). Casuarictin bound competitively to α-glucosidase, occupying not only the catalytic site but also forming strong hydrogen bonds with α-glucosidase residues. Therefore, casuarictin derived from MDL fruits might be used as novel α-glucosidase inhibitor in functional foods or other dietary products.


Assuntos
Inibidores de Glicosídeo Hidrolases , Melastomataceae , Animais , Antocianinas , Glicemia/metabolismo , Frutas/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Melastomataceae/metabolismo , Camundongos , Extratos Vegetais/química , alfa-Glucosidases/metabolismo
8.
J Hazard Mater ; 443(Pt B): 130348, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36372020

RESUMO

Supercritical water (SCW, T > 374.15 °C, P > 22.1 MPa) treatment can achieve volume reduction, harmless disposal, and resource utilization of oily sludge. Herein, we investigated the oil removal efficiency (ORE) and oil diffusion characteristics in oily sludge particles under SCW environment. The experimental results showed that when the treatment duration was extended from 5 min to 60 min, the particle diameter decreased from 4 mm to 2 mm, and the ORE improved considerably; however, the treatment temperature (375 °C ∼ 425 °C) had little influence. Based on these findings, an oil diffusion mechanism in oily sludge particles under SCW environment was proposed. Subsequently, a reasonable mathematical model of diffusion was developed to represent the heat and mass transfer in oily sludge particles characterized by porous, high moisture, and oil content. Finally, by analyzing the oil diffusion process in sludge particles within this model, it was found that the oil concentration in SCW and particle diameter had a considerable influence on ORE, while the effect can be ignored when the diameter < 0.2 mm. This research serves as a guide for effectively using SCW to remove oil from oily sludge.


Assuntos
Esgotos , Água , Difusão , Porosidade , Modelos Teóricos , Óleos
9.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38256890

RESUMO

Prostatitis, a prevalent urinary tract disorder in males, has a complex etiology that leads to severe clinical discomfort. Pule'an Tablets, a classic single-component formulation primarily based on rapeseed pollen, have been clinically proven to have a beneficial therapeutic effect on both prostatitis and benign prostatic hyperplasia. However, there is currently a lack of research on the chemical composition and mechanisms of action of Pule'an Tablets in treating prostatitis. In this study, using liquid chromatography-mass spectrometry (LC-MS), a total of 53 compounds in Pule'an Tablets were identified, including flavonoids, phenylpropionamides, lipids, glucosinolates, and nucleic acids. Subsequently, through a network pharmacology analysis, potential target genes and their mechanisms of action were predicted accordingly. The results suggested that genes such as LPAR5, LPAR6, LPAR4, LPAR3, LPAR2, LPAR1, F2, ENPP2, MMP9, and TNF, along with pathways like prostate cancer, endocrine resistance, bladder cancer, and the IL-17 signaling pathway, may represent potential pathways involved in the therapeutic effects of Pule'an Tablets. This study represents the first systematic investigation into the chemical composition of Pule'an Tablets, shedding light on the potential mechanisms underlying their efficacy in treating prostatitis. These findings could serve as a valuable reference for future pharmacological research on Pule'an Tablets.

10.
Micromachines (Basel) ; 13(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363912

RESUMO

The purpose of this paper is to study the oil film and friction characteristics of valve plates with a micro-textured surface and to explore the influence of textures of different shapes and sizes on the valve plates. Firstly, on the basis of thermohydrodynamic theory, this paper established the lubrication model of the oil film on the valve plate pair of swashplate axial piston pumps, according to the Reynolds equation. Secondly, the micro-texture was added to the mathematical model of the valve plate pair's oil film. A combination of the energy equation, oil-film-thickness equation, elastic deformation equation, viscosity-pressure and viscosity-temperature equation, the finite difference method, as well as the relaxation iteration method, was used to solve the problem, and the textured and non-textured valve plate surfaces were simulated. The nephogram of the oil-film-thickness distribution, elastic deformation distribution, oil-film-pressure distribution and oil-film-temperature distribution were generated. Then, the control variable method was used to change the cylinder rotational speed, tilt angle, oil viscosity, initial oil film thickness and other parameters to analyze their effects on oil film characteristics. In addition, the friction characteristics of non-textured surfaces, square textured surfaces, triangular textured surfaces and circular textured surfaces were compared and analyzed. It was found that the textured surface of valve plates can obviously improve friction efficiency under the same operating conditions. The square texture, especially, is the preferable shape, rather than the triangular texture and the circular texture, and the friction performance is at its best when the texture depths are between 20 µm and 50 µm. The results provide a theoretical basis for the design and improvement of the valve plate.

11.
Plants (Basel) ; 11(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36079607

RESUMO

The amount of atmospheric nitrogen-containing aerosols has increased dramatically due to the globally rising levels of nitrogen from fertilization and atmospheric deposition. Although the balance of carbon and nitrogen in plants is a crucial component of physiological and biochemical indexes and plays a key role in adaptive regulation, our understanding of how nitrogen-containing aerosols affect this remains limited; in particular, regarding the associated mechanisms. Using a fumigation particle generator, we generated ammonium nitrate solution (in four concentrations of 0, 15, 30, 60 kg N hm-2 year-1) into droplets, in 90% of which the diameters were less than 2.5 µm, in the range of 0.35-4 µm, and fumigated Iris germanica L. and Portulaca grandiflora Hook. for 30 days in April and August. We found that the weight percentage of nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves decreased significantly with the N addition rate, which caused a decrease of carbon:nitrogen ratio, due to the enhanced net photosynthetic rate. Compared with Portulaca grandiflora Hook., Iris germanica L. responded more significantly to the disturbance of N addition, resulting in a decrease in the weight percentage of nitrogen in the roots, due to a lower nitrogen use efficiency. In addition, the superoxide dismutase activity of the two plants was inhibited with a higher concentration of nitrogen sol; a reduction of superoxide dismutase activity in plants means that the resistance of plants to various environmental stresses is reduced, and this decrease in superoxide dismutase activity may be related to ROS signaling. The results suggest that inorganic nitrogen-containing aerosols caused excessive stress to plants, especially for Iris germanica L.

12.
Antioxidants (Basel) ; 11(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35624885

RESUMO

Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance.

13.
Sci Total Environ ; 838(Pt 2): 156055, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598674

RESUMO

Harmful algal blooms (HAB) are a serious problem worldwide. Allelochemicals from natural plants were recently thought to be promising anti-algaecide in controlling harmful algae. However, the programmed cell death (PCD) process of algae under allelopathic pressure induced by 5,4'-dihydroxyflavone (5,4'-DHF) was poorly understood. In this study, two common and worldwide distributed microalgae, Microcystis aeruginosa and Phaeocystis globosa were selected as target algae, and the PCD processes induced by 5,4'-DHF were cross-compared between the two species. Both algae species were inhibited significantly by 5,4'-DHF with the relative sensitivity of 0.11. To uncover the PCD progress systematically, signals for PCD triggering, antioxidant enzyme activity, photosynthetic ability variation, caspase-like activities and typical indicators were investigated. In both species, typical indicators of PCD - phosphatidylserine externalization and chromatin condensation - were detected. The intracellular reactive oxygen species (ROS), nitric oxide (NO) and H2O2 were the potential signal molecules to stimulate PCD, and caspase-like activities were activated with an elevation of cytochrome c indicating the initiation of PCD in both species. However, P. globosa responded to 5,4'-DHF immediately after 3 h with the elevation of ROS and not in M. aeruginosa. Antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in M. aeruginosa and P. globosa also showed different patterns on day 3. Specifically, SOD activity in M. aeruginosa increased significantly while it decreased significantly in P. globosa, CAT activity in M. aeruginosa decreased significantly while it increased significantly in P. globosa (p < 0.05). Malondialdehyde (MDA) content in P. globosa increased significantly (p < 0.001) while it showed no variation in M. aeruginosa. Overall, this study is one of the earliest studies to explore the inhibition and action mechanism of plant derived flavonoids on harmful algae from the perspective of PCD, and provide new insights into the antialgal mechanism of allelochemicals.


Assuntos
Haptófitas , Microcystis , Antioxidantes/metabolismo , Apoptose , Caspases , Água Doce , Haptófitas/metabolismo , Peróxido de Hidrogênio , Microcystis/metabolismo , Feromônios , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
14.
Environ Sci Technol ; 56(1): 480-490, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927421

RESUMO

Thousands of contaminants are used worldwide and eventually released into the environment, presenting a challenge of health risk assessment. The identification of key toxic pathways and characterization of interactions with target biomacromolecules are essential for health risk assessments. The adverse outcome pathway (AOP) incorporates toxic mechanisms into health risk assessment by emphasizing the relationship among molecular initiating events (MIEs), key events (KEs), and adverse outcome (AO). Herein, we attempted the use of AOP to decipher the toxic effects of 2,6-di-tert-butylphenol (2,6-DTBP) and its para-quinone metabolite 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTBQ) based on integrated transcriptomics, molecular modeling, and cell-based assays. Through transcriptomics and quantitative real-time PCR validation, we identified retinoic acid receptor ß (RARß) as the key target biomacromolecule. The epigenetic analysis and molecular modeling revealed RARß interference as one MIE, including DNA methylation and conformational changes. In vitro assays extended subsequent KEs, including altered protein expression of p-Erk1/2 and COX-2, and promoted cancer cell H4IIE proliferation and metastasis. These toxic effects altogether led to carcinogenic risk as the AO of 2,6-DTBP and 2,6-DTBQ, in line with chemical carcinogenesis identified from transcriptome profiling. Overall, our simplified AOP network of 2,6-DTBP and 2,6-DTBQ facilitates relevant health risk assessment.


Assuntos
Carcinógenos , Quinonas , Benzoquinonas/toxicidade , Carcinogênese , Carcinógenos/toxicidade , Humanos , Fenóis , Receptores do Ácido Retinoico
15.
J Fungi (Basel) ; 7(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34682213

RESUMO

The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha-1 yr-1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.

16.
Rapid Commun Mass Spectrom ; 35(19): e9172, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34318544

RESUMO

RATIONALE: Beta vulgaris L. has attracted increasing attention because of its broad application. The root of B. vulgaris L. (beetroot) possesses many excellent biological properties such as antianemic, anti-inflammatory, antihypertensive, antioxidant, anticarcinogenic, antipyretic, antibacterial, detoxicant, and diuretic. The chemical constituents of beetroot play a major role in the research on beetroot application and development. At present, no systematic identification study that focuses on the chemical constituents of beetroot has been reported. METHODS: This study investigated a three-step strategy comprising phytochemical profiling, prototype profiling, and metabolism of its correlative metabolites in vivo using ultra-performance liquid chromatography tandem quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). RESULTS: UPLC-QTOF-MS/MS technique proved to be a rapid, sensitive, and reliable method for monitoring the specific ingredients as well as the whole chemical constituents in beetroot. In sum, 95 phytochemical compounds, 51 prototype compounds, and 37 derived metabolites in vivo were found in beetroot. CONCLUSIONS: The main metabolic pathways were sulfonation, glucuronidation, methylation/sulfonation, and methylation. The present findings provided the phytochemical basis both in vitro and in vivo for future application.


Assuntos
Beta vulgaris/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Beta vulgaris/química , Feminino , Metaboloma , Camundongos , Camundongos Endogâmicos ICR , Tubérculos/química , Tubérculos/metabolismo
17.
Eur J Med Chem ; 214: 113226, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582387

RESUMO

Lamellarin D, a marine natural product, acts as a potent inhibitor of DNA topoisomerase I (Topo I). To modify its physicochemical property and biological activity, a series of mono- and di-glycosylated derivatives were designed and synthesized through 22-26 multi-steps. Their inhibition of human Topo I was evaluated, and most of the glycosylated derivatives exhibited high potency in inhibiting Topo I activity as well as lamellarin D. All the 15 target compounds were evaluated for their cytotoxic activities against five human cancer cell lines. The typical lamellarin derivative ZL-3 exhibited the best activity with IC50 values of 3 nM, 10 nM, and 15 nM against human lung cancer A549 cells, human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells. Compound ZL-1 exhibited anti-cancer activity with IC50 of 14 nM and 24 nM against human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells, respectively. Cell cycle analysis in MDA-MB-231 suggested ZL-3 inhibited cell growth through arresting cells at the G2/M phase of the cell cycle. Further tests showed a significant improvement in aqueous solubility of ZL-1 and ZL-7. This study suggested that glycosylation could be utilized as a useful strategy to optimize lamellarin D derivatives as Topo I inhibitors and anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cumarínicos/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosilação , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas
18.
Talanta ; 224: 121880, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379089

RESUMO

Herbal medicine formulas (HMFs), the combinations of two or more herbal medicine (HM) ingredients required in a single prescription, are a typical kind of combined sample matrices. LC-MS is a powerful platform for the analyses of such complex samples. The optimization of separation conditions may require a lot of experiments, because multiple analytes need to be separated from a plethora of possible interfering compounds in the sample mixture containing different herbal medicines. To greatly reduce the complexity needed for the optimization of separation conditions, this work proposes a data-driven approach for the systematic development of LC-MS methods for HMFs, using six HMFs created from four HMs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, Corydalis Rhizoma and Ophiopogonis Radix) as case-studies. In this approach, the chromatographic peak parameters (like retention times) of the analytes and interfering compounds under different separation conditions were extracted from the LC-MS database of the HMs. Then data-driven models between the chromatographic peak parameters and the separation parameters were built with machine learning methods (r > 0.996 for all the compounds) and used to predict the chromatographic peaks of the analytes and interfering compounds in HMF analyses. Based on the predictions, all of the separation parameters were optimized without any previous experiments on the HMFs. In the validation experiments for the six HMFs, all of the analytes were well separated. The data-driven approach demonstrated enables systematic and rapid development of LC-MS methods for HMFs, and the separation conditions can be efficiently adjusted for different analytes.

19.
J Agric Food Chem ; 68(34): 9090-9099, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32806110

RESUMO

In the present study, the effects of root restriction (RR) on the main phenolic metabolites and the related gene expression at different developmental stages were studied at the transcriptomic and metabolomic levels in "Summer Black" grape berries (Vitis vinifera × Vitis labrusca). The results were as follows: seven phenolic acid compounds, three stilbene compounds, nine flavonol compounds, 10 anthocyanin compounds, and 24 proanthocyanidin compounds were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry. RR treatment significantly promoted the biosynthesis of phenolic acid, trans-resveratrol, flavonol, and anthocyanin and also affected the proanthocyanidin content, which was elevated in the early developmental stages and then reduced in the late developmental stages. The functional genes for phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, shikimate O-hydroxycinnamoyl transferase, chalcone synthase, chalcone isomerase, stilbene synthase, flavonoid 3',5'-hydroxylase, anthocyanidin 3-O-glucosyltransferase, and the transcription factors MYBA1, MYBA2, MYBA3, and MYBA22 were inferred to play critical roles in the changes regulated by RR treatment.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Vitis/genética , Antocianinas/química , Antocianinas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenóis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estilbenos/química , Estilbenos/metabolismo , Transcriptoma , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
20.
Fitoterapia ; 143: 104555, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32194170

RESUMO

Six previously undescribed compounds, named monaxanthones A and B, monaphenol A, monathioamide A, monaprenylindole A, and monavalerolactone A, were isolated from the culture of a marine-sourced bacterium Pseudomonas sp. ZZ820R in rice medium. Their structures were elucidated based on the HRESIMS data, NMR and MS-MS spectroscopic analyses, optical rotation and ECD calculations. Monathioamide A is an unprecedented sulfur-contained compound and monavalerolactone A represents the first example of this type of natural products. Monaprenylindole A showed antibacterial activity against methicillin-resistant Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Lactonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas/química , Tioamidas/farmacologia , Antibacterianos/isolamento & purificação , Organismos Aquáticos/química , Linhagem Celular Tumoral , China , Escherichia coli/efeitos dos fármacos , Humanos , Lactonas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Microbiologia do Solo , Espectrometria de Massas em Tandem , Tioamidas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...