Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790193

RESUMO

In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae's ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of 'nutritional immunity,' the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota.

2.
Phytopathology ; 105(3): 316-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25302523

RESUMO

Dynamics of population sizes of Xanthomonas campestris pv. vitians inoculated onto or into lettuce leaves were monitored on susceptible and resistant cultivars. In general, population growth was greater for susceptible (Clemente, Salinas 88, Vista Verde) than resistant (Batavia Reine des Glaces, Iceberg, Little Gem) cultivars. When spray-inoculated or infiltrated, population levels of X. campestris pv. vitians were consistently significantly lower on Little Gem than on susceptible cultivars, while differences in the other resistant cultivars were not consistently statistically significant. Populations increased at an intermediate rate on cultivars Iceberg and Batavia Reine des Glaces. There were significant positive correlations between bacterial concentration applied and disease severity for all cultivars, but bacterial titer had a significantly greater influence on disease severity in the susceptible cultivars than in Little Gem and an intermediate influence in Iceberg and Batavia Reine des Glaces. Infiltration of X. campestris pv. vitians strains into leaves of Little Gem resulted in an incompatible reaction, whereas compatible reactions were observed in all other cultivars. It appears that the differences in the relationship between population dynamics for Little Gem and the other cultivars tested were due to the hypersensitive response in cultivar Little Gem. These findings have implications for disease management and lettuce breeding because X. campestris pv. vitians interacts differently with cultivars that differ for resistance mechanisms.


Assuntos
Interações Hospedeiro-Patógeno/genética , Lactuca/microbiologia , Xanthomonas campestris/fisiologia , Genótipo , Lactuca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...