Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 23(5): 901-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166948

RESUMO

The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/enzimologia , Núcleo Celular/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo
2.
J Biol Chem ; 288(23): 16451-16459, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23625917

RESUMO

The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of ß-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of ß-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of ß-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Fosfatidiletanolaminas/genética , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Biochim Biophys Acta ; 1827(5): 612-26, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23274250

RESUMO

The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte de Elétrons/fisiologia , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico/fisiologia
4.
Mol Cell ; 44(5): 811-8, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152483

RESUMO

The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.


Assuntos
Transporte de Elétrons , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
5.
Biochim Biophys Acta ; 1808(3): 1002-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20696129

RESUMO

Protein trafficking and translocation are essential processes in even the simplest living cells. The compartmentalisation within eukaryotic cells places a very high demand on the fidelity of protein trafficking and translocation, since a large percentage of the cell's protein complement is inserted into, or translocated across membranes. Indeed, most mitochondrial proteins are imported from the cytosol into the organelle and reach their final destination with the assistance of versatile translocation machineries. The first components involved in mitochondrial protein import were identified about 20years ago and over the last two decades many new factors and machineries have been brought to light. However, in spite of these discoveries we still have much to explore regarding the molecular mechanisms that distinguish the different mitochondrial import pathways. In particular, an open question that requires deeper exploration is the role of lipids and lipid modifying enzymes in this process. Mitochondrial biogenesis requires the coordinated synthesis and import of both proteins and phospholipids, however, these have typically been considered as distinct research fields. Recent findings have placed phospholipids at the forefront of research dealing with mitochondrial biogenesis, in particular their role in the regulation of mitochondrial transport machineries. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Assuntos
Lipídeos/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Transporte Proteico
6.
Curr Biol ; 19(24): 2133-9, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19962311

RESUMO

The biogenesis of mitochondria requires the import of a large number of proteins from the cytosol [1, 2]. Although numerous studies have defined the proteinaceous machineries that mediate mitochondrial protein sorting, little is known about the role of lipids in mitochondrial protein import. Cardiolipin, the signature phospholipid of the mitochondrial inner membrane [3-5], affects the stability of many inner-membrane protein complexes [6-12]. Perturbation of cardiolipin metabolism leads to the X-linked cardioskeletal myopathy Barth syndrome [13-18]. We report that cardiolipin affects the preprotein translocases of the mitochondrial outer membrane. Cardiolipin mutants genetically interact with mutants of outer-membrane translocases. Mitochondria from cardiolipin yeast mutants, as well as Barth syndrome patients, are impaired in the biogenesis of outer-membrane proteins. Our findings reveal a new role for cardiolipin in protein sorting at the mitochondrial outer membrane and bear implications for the pathogenesis of Barth syndrome.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Autorradiografia , Síndrome de Barth/fisiopatologia , Cardiolipinas/genética , Linhagem Celular , Eletroforese , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae
7.
Mol Biol Cell ; 20(10): 2530-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19297525

RESUMO

The intermembrane space of mitochondria contains the specific mitochondrial intermembrane space assembly (MIA) machinery that operates in the biogenesis pathway of precursor proteins destined to this compartment. The Mia40 component of the MIA pathway functions as a receptor and binds incoming precursors, forming an essential early intermediate in the biogenesis of intermembrane space proteins. The elements that are crucial for the association of the intermembrane space precursors with Mia40 have not been determined. In this study, we found that a region within the Tim9 and Tim10 precursors, consisting of only nine amino acid residues, functions as a signal for the engagement of substrate proteins with the Mia40 receptor. Furthermore, the signal contains sufficient information to facilitate the transfer of proteins across the outer membrane to the intermembrane space. Thus, here we have identified the mitochondrial intermembrane space sorting signal required for delivery of proteins to the mitochondrial intermembrane space.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Leucina/metabolismo , Proteínas de Membrana/química , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Ligação Proteica , Precursores de Proteínas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química
8.
J Cell Biol ; 183(7): 1213-21, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114592

RESUMO

The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.


Assuntos
Cardiolipinas/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell Biol ; 28(13): 4251-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458057

RESUMO

The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.


Assuntos
Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Membrana/metabolismo , Peso Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico
10.
EMBO Rep ; 9(6): 548-54, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18421298

RESUMO

The mitochondrial intermembrane space contains a family of small Tim proteins that function as essential chaperones for protein import. The soluble Tim9-Tim10 complex transfers hydrophobic precursor proteins through the aqueous intermembrane space to the carrier translocase of the inner membrane (TIM22 complex). Tim12, a peripheral membrane subunit of the TIM22 complex, is thought to recruit a portion of Tim9-Tim10 to the inner membrane. It is not known, however, how Tim12 is assembled. We have identified a new intermediate in the biogenesis pathway of Tim12. A soluble form of Tim12 first assembles with Tim9 and Tim10 to form a Tim12-core complex. Tim12-core then docks onto the membrane-integrated subunits of the TIM22 complex to form the holo-translocase. Thus, the function of Tim12 in linking soluble and membrane-integrated subunits of the import machinery involves a sequential assembly mechanism of the translocase through a soluble intermediate complex of the three essential small Tim proteins.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Complexos Multiproteicos/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...