Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Evol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865991

RESUMO

Introduction Comparative studies of brain anatomy between closely related species have been very useful in demonstrating selective changes in brain structure. Within-species comparisons can be particularly useful for identifying changes in brain structure caused by contrasting environmental selection pressures. Here, we aimed to understand whether differences within and between species in habitat use and foraging behaviour influence brain morphology, on both ecological and evolutionary time scales. Methods We used as a study model three species of the Elacatinus genus that differ in their habitat-foraging mode. The obligatory cleaning goby Elacatinus evelynae inhabits mainly corals and feeds mostly on ectoparasites removed from larger fish during cleaning interactions. In contrast, the obligatory sponge-dwelling goby Elacatinus chancei inhabits tubular sponges and feeds on microinvertebrates buried in the sponges' tissues. Finally, in the facultatively cleaning goby Elacatinus prochilos, individuals can adopt either phenotype, the cleaning or the sponge-dwelling habitat-foraging mode. By comparing the brains of the facultative goby phenotypes to the brains of the obligatory species we can test whether brain morphology is better predicted by phylogenetic relatedness or the habitat-foraging modes (cleaning x sponge-dwelling). Results We found that E. prochilos brains from both types (cleaning and sponge-dwelling) were highly similar to each other. Their brains were in general more similar to the brains of the most closely related species, E. evelynae (obligatory cleaning species), than to the brains of E. chancei (sponge-dwelling species). In contrast, we found significant brain structure differences between the cleaning species (E. evelynae and E. prochilos) and the sponge-dwelling species (E. chancei). These differences revealed independent changes in functionally correlated brain areas that might be ecologically adaptive. E. evelynae and E. prochilos had a relatively larger visual input processing brain axis and a relatively smaller lateral line input processing brain axis than E. chancei. Conclusion The similar brain morphology of the two types of E. prochilos corroborates other studies showing that individuals of both types can be highly plastic in their social and foraging behaviours. Our results in the Elacatinus species suggest that morphological adaptations of the brain are likely to be found in specialists whereas species that are more flexible in their habitat may only show behavioral plasticity without showing anatomical differences.

2.
Vis Neurosci ; 40: E005, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38116689

RESUMO

The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.


Assuntos
Peixes , Vertebrados , Animais , Filogenia
3.
Brain Behav Evol ; 98(4): 171-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948163

RESUMO

Brains are very plastic, both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels are scarce, especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block-face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.


Assuntos
Evolução Biológica , Peixes , Animais , Peixes/anatomia & histologia , Encéfalo/anatomia & histologia , Ecossistema , Cerebelo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...