Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(3): 196, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175462

RESUMO

Streams and rivers cover a larger proportion of the Earth's surface but are highly affected by human pressures. Conversely, bioassessment methods are in their infancy in developing countries such as Ethiopia. In this study, we compared 2- and 3-min macroinvertebrate kick samples at multiple locations for both riffle habitat (RH) and multihabitat (MH) approaches. The performance of each method was evaluated statistically using benthic macroinvertebrate metrics and diversity indices. Results of the Kruskal-Wallis analysis in this study showed no significant differences among methods tested in minimally impacted streams in Ethiopia and generally performed equally irrespective of the methods employed except for total abundances and Ephemeroptera abundances. Furthermore, multivariate analysis of the relative abundances of macroinvertebrate communities using analysis of similarity (ANOSIM), RELATE, non-metric multidimensional scaling (MDS), and classification strength-sampling method comparability (CS-SMC) indicated a high similarity in the macroinvertebrate communities recorded among all methods employed in this study area. However, the index of multivariate dispersion (IMD) test showed variations in relative abundances of macroinvertebrate communities among the methods. In summary, if the focus is not on rare taxa and the required information is not dependent on additional evidence provided by the use of lower taxonomic levels of identification (genus and species), the results of the present study support the use of the shorter 2-min RH kick sampling method for the bioassessment of wadeable rivers and streams in Ethiopia.


Assuntos
Invertebrados , Rios , Animais , Ecossistema , Monitoramento Ambiental/métodos , Etiópia , Humanos
2.
PLoS One ; 16(9): e0249643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492028

RESUMO

The demand for water-energy (WE) should be addressed with their sustainable supply in the long-term planning. The total energy demand was estimated to be around 14,000000 and 53,000000 MWh for 2030 and 2050 years respectively. These years' predicted water demand was 0.4 and 0.7 billion-cubic-meter. Based on the estimated energy and water demand, sustainable supply through WE management were determined. In 2030 and 2050 the water supply-demand balance index is around 1, showed water demand will be met for respective years, whereas the energy supply-balance after the intervention become around 0.9 and 0.7. The study results clearly predicted future WE demand of Addis Ababa city and have been put their quantified supply suggestion.


Assuntos
Conservação dos Recursos Hídricos/métodos , Fontes Geradoras de Energia , Abastecimento de Água , Cidades , Etiópia , Humanos , Modelos Teóricos , Energia Renovável , Fatores Socioeconômicos , Desenvolvimento Sustentável
3.
Artigo em Inglês | MEDLINE | ID: mdl-29443888

RESUMO

As in many other cities, urbanization coupled with population growth worsens the water supply problem of Addis Ababa, Ethiopia, with a water supply deficit of 41% in 2016. To investigate the potential contribution of rooftop rainwater harvesting (RWH) from large public institutions, 320 such institutions were selected and grouped into 11 categories, from which 25-30% representative 588 rooftops were digitalized and the potential RWH volume computed based on a ten-year rainfall dataset. When comparing the resulting RWH potential with the water consumption, up to 2.3% of the annual, potable water supply can be provided. If reused only within one's own institution, the self-sufficiency varies from 0.9 to 649%. Non-uniform rainfall patterns add uncertainty to these numbers, since the size of the storage tank becomes critical for coverage in the dry season from October to May. Despite the low replacement potential at the city level, RWH from large institutions will enable a significant volume of potable water to be transferred to localities critically suffering from water shortage. Further, large institutions may demonstrate how RWH can be practiced, thus acting as a frontrunner for the dissemination of RWH to other types of rooftops. To narrow the water supply gap, considering rooftop RWH as an alternative water supply source is recommended. However, the present study assumed that financial constraints to install large sized storage tanks are considered as a possible challenge. Thus, future research is needed to investigate the cost-benefit balance along with the invention of a cheap storage tank as they may affect the potential contribution of RWH from rooftops.


Assuntos
Conservação dos Recursos Naturais/métodos , Água Potável , Logradouros Públicos , Chuva , Abastecimento de Água/métodos , Cidades , Etiópia , Humanos , Estações do Ano , Incerteza , Abastecimento de Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...