Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 670-680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838166

RESUMO

Deflectometric profilometers are used to precisely measure the form of beam shaping optics of synchrotrons and X-ray free-electron lasers. They often utilize autocollimators which measure slope by evaluating the displacement of a reticle image on a detector. Based on our privileged access to the raw image data of an autocollimator, novel strategies to reduce the systematic measurement errors by using a set of overlapping images of the reticle obtained at different positions on the detector are discussed. It is demonstrated that imaging properties such as, for example, geometrical distortions and vignetting, can be extracted from this redundant set of images without recourse to external calibration facilities. This approach is based on the fact that the properties of the reticle itself do not change - all changes in the reticle image are due to the imaging process. Firstly, by combining interpolation and correlation, it is possible to determine the shift of a reticle image relative to a reference image with minimal error propagation. Secondly, the intensity of the reticle image is analysed as a function of its position on the CCD and a vignetting correction is calculated. Thirdly, the size of the reticle image is analysed as a function of its position and an imaging distortion correction is derived. It is demonstrated that, for different measurement ranges and aperture diameters of the autocollimator, reductions in the systematic errors of up to a factor of four to five can be achieved without recourse to external measurements.

2.
Rev Sci Instrum ; 90(2): 021705, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831764

RESUMO

Deflectometric profilometers are indispensable tools for the precision form measurement of beam-shaping optics of synchrotrons and x-ray free electron lasers. They are used in metrology labs for x-ray optics worldwide and are crucial for providing measurement accuracy dictated by the form tolerances for modern state-of-the-art x-ray optics. Deflectometric profilometers use surface slope (angle) to assess form, and they utilize commercial autocollimators for the contactless slope measurement. In this contribution, we discuss the influences of environmental parameters, such as temperature and air pressure, including their gradients, on high-accuracy metrology with autocollimators in profilometers. They can cause substantial systematic errors in form measurement, especially in the case of large and strongly curved optical surfaces of high dynamic range. Relative angle and form measuring errors of the order of 10-4 are to be expected. We characterize environmental influences by extended theoretical and experimental investigations and derive strategies for correcting them. We also discuss the possibility to minimize the contributions of some errors by the application of sophisticated experimental arrangements and methods. This work aims at approaching fundamental limits in autocollimator-based slope and form metrology.

3.
Rev Sci Instrum ; 87(5): 051904, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250376

RESUMO

The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

4.
Opt Express ; 16(15): 11289-93, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18648447

RESUMO

Characterization of the topography of materials by interferometry in the visible or near-IR wavelength regime becomes difficult or impossible if the surface is rough on the length scale of a tenth of the wavelength and more. In this case, THz radiation can provide an interesting alternative. We demonstrate heterodyne profilometry at 600 GHz as a method for the accurate determination of surface topography with an achievable expanded standard uncertainty of 0.5 mum.


Assuntos
Interferometria/métodos , Teste de Materiais/métodos , Micro-Ondas , Propriedades de Superfície , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...