Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(11): 4668-4677, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36318670

RESUMO

Mycobacterial infectious diseases, including tuberculosis (TB), severely threaten global public health. Nonreplicating Mycobacterium tuberculosis (Mtb) is extremely difficult to eradicate using current TB drugs that primarily act on replicating cells. Novel TB drugs acting on unconventional targets are needed to combat TB efficiently. Although membrane-disrupting antimicrobial peptides and their synthetic mimics exhibit the potential to kill persisters, the lack of microbe selectivity, especially toward mycobacteria, has been a concern. Here, we report that the recently developed poly(guanylurea)-piperazine (PGU-P) shows fast and selective mycobactericidal effects. Using a nonpathogenic model organism, Mycobacterium smegmatis (Msm), we have found that the mycobactericidal effects of PGU-P are correlated to the disruption of the mycobacterial membrane potential and bioenergetics. Accordingly, PGU-P also potentiates bedaquiline, an oxidative phosphorylation-targeting TB drug disturbing mycobacterial bioenergetics. Importantly, PGU-P also exhibits a promising activity against pathogenic Mtb with a minimum inhibitory concentration of 37 µg/mL. Our results support that PGU-P is a novel class of antimycobacterial biomaterial, and the unique structural feature can contribute to developing novel antimycobacterial drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Força Próton-Motriz , Polímeros/farmacologia , Tuberculose/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
ACS Omega ; 7(27): 23487-23496, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847331

RESUMO

Tuberculosis is a disease caused primarily by the organism Mycobacterium tuberculosis (Mtb), which claims about 1.5 million lives every year. A challenge that impedes the elimination of this pathogen is the ability of Mtb to remain dormant after primary infection, thus creating a reservoir for the disease in the population that reactivates under more ideal conditions. A better understanding of the physiology of dormant Mtb and therapeutics able to kill these phenotypically tolerant bacilli will be critical for completely eradicating Mtb. Our groups are focusing on characterizing the activity of derivatives of the marine natural product (+)-puupehenone (1). Recently, the Rohde group reported that puupehedione (2) and 15-α-methoxypuupehenol (3) exhibit enhanced activity in an in vitro multi-stress dormancy model of Mtb. To optimize the antimycobacterial activity of these terpenoids, novel 15-α-methoxy- and 15-α-acetoxy-puupehenol esters were prepared from (+)-puupehenone (1) accessed through a (+)-sclareolide-derived ß-hydroxyl aldehyde. For added diversity, various congeners related to (1) were also prepared from a common borono-sclareolide donor, which resulted in the synthesis of epi-puupehenol and the natural products (+)-chromazonarol and (+)-yahazunol. In total, we generated a library of 24 compounds, of which 14 were found to be active against Mtb, and the most active compounds retained the enhanced activity against dormant Mtb seen in the parent compound. Several of the 15-α-methoxy- and 15-α-acetoxy-puupehenol esters possessed potent activity against actively dividing and dormant Mtb. Intriguingly, the closely related triisobutyl derivative 16 showed similar activity to 1 in actively dividing Mtb but lost about 178-fold activity against dormant Mtb. However, the monopivaloyl compound 13 showed a modest 3- to 4-fold loss in activity in both actively dividing and dormant Mtb relative to the activity of 1 revealing the importance of the free OH at C19 supporting the potential role of quinone methide formation as critical for activity in dormant Mtb. Elucidating important structure-activity relationships and the mechanism of action of this natural product-inspired chemical series may yield insights into vulnerable drug targets in dormant bacilli and new therapeutics to more effectively target dormant Mtb.

3.
Sci Rep ; 9(1): 19348, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852980

RESUMO

Macrophages are an important component of the innate immune response. Priming and activation of macrophages is stimulated by cytokines (i.e IFNγ). However, growth hormone (GH) can also stimulate macrophage activation. Based on these observations, the goal of this work was to 1) to compare the transcriptome profile of macrophages activated in vitro with GH and IFNγ, and 2) to assess the impact of GH on key macrophage functional properties like reactive oxygen species (ROS) production and phagosomal proteolysis. To assess the global transcriptional and functional impact of GH on macrophage programming, bone marrow derived macrophages were treated with GH or IFNγ. Our data strongly support a potential link between GH, which wanes with age, and impaired macrophage function. The notable overlap of GH with IFNγ-induced pathways involved in innate immune sensing of pathogens and antimicrobial responses argue for an important role for GH in macrophage priming and maturation. By using functional assays that report on biochemical activities within the lumen of phagosomes, we have also shown that GH alters physiologically relevant processes such as ROS production and proteolysis. These changes could have far reaching impacts on antimicrobial capacity, signaling, and antigen presentation.


Assuntos
Reprogramação Celular/genética , Hormônio do Crescimento/farmacologia , Macrófagos/metabolismo , Transcriptoma/genética , Animais , Reprogramação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Análise de Componente Principal , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-28607021

RESUMO

The dormant phenotype acquired by Mycobacterium tuberculosis during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. Therefore, it is imperative to find novel compounds that effectively kill dormant bacteria. By screening 4,400 marine natural product samples against dual-fluorescent M. tuberculosis under both replicating and nonreplicating conditions, we have identified compounds that are selectively active against dormant M. tuberculosis This validates our strategy of screening all compounds in both assays as opposed to using the dormancy model as a secondary screen. Bioassay-guided deconvolution enabled the identification of unique pharmacophores active in each screening model. To confirm the activity of samples against dormant M. tuberculosis, we used a luciferase reporter assay and enumerated CFU. The structures of five purified active compounds were defined by nuclear magnetic resonance (NMR) and mass spectrometry. We identified two lipid compounds with potent activity toward dormant and actively growing M. tuberculosis strains. One of these was commercially obtained and showed similar activity against M. tuberculosis in both screening models. Furthermore, puupehenone-like molecules were purified with potent and selective activity against dormant M. tuberculosis In conclusion, we have identified and characterized antimycobacterial compounds from marine organisms with novel activity profiles which appear to target M. tuberculosis pathways that are conditionally essential for dormancy survival.


Assuntos
Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Sesquiterpenos/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Xantonas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Sesquiterpenos/química , Xantonas/química
5.
Antimicrob Agents Chemother ; 60(7): 4028-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27114277

RESUMO

Bacterial topoisomerase functions are required for regulation of DNA supercoiling and overcoming the DNA topological barriers that are encountered during many vital cellular processes. DNA gyrase and topoisomerase IV of the type IIA bacterial topoisomerase family are important clinical targets for antibacterial therapy. Topoisomerase I, belonging to the type IA topoisomerase family, has recently been validated as a potential antitubercular target. The topoisomerase I activity has been shown to be essential for bacterial viability and infection in a murine model of tuberculosis. Mixture-based combinatorial libraries were screened in this study to identify novel bacterial topoisomerase I inhibitors. Using positional-scanning deconvolution, selective small-molecule inhibitors of bacterial topoisomerase I were identified starting from a polyamine scaffold. Antibacterial assays demonstrated that four of these small-molecule inhibitors of bacterial topoisomerase I are bactericidal against Mycobacterium smegmatis and Mycobacterium tuberculosis The MICs for growth inhibition of M. smegmatis increased with overexpression of recombinant M. tuberculosis topoisomerase I, consistent with inhibition of intracellular topoisomerase I activity being involved in the antimycobacterial mode of action.


Assuntos
Antituberculosos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Antibacterianos/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo
6.
PLoS One ; 8(9): e73390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039929

RESUMO

Vibrio cholerae produces cholera toxin (CT), an AB5 protein toxin that is primarily responsible for the profuse watery diarrhea of cholera. CT is secreted into the extracellular milieu, but the toxin attacks its Gsα target within the cytosol of a host cell. Thus, CT must cross a cellular membrane barrier in order to function. This event only occurs after the toxin travels by retrograde vesicular transport from the cell surface to the endoplasmic reticulum (ER). The catalytic A1 polypeptide then dissociates from the rest of the toxin and assumes an unfolded conformation that facilitates its transfer to the cytosol by a process involving the quality control system of ER-associated degradation. Productive intoxication is blocked by alterations to the vesicular transport of CT and/or the ER-to-cytosol translocation of CTA1. Various plant compounds have been reported to inhibit the cytopathic activity of CT, so in this work we evaluated the potential anti-CT properties of grape extract. Two grape extracts currently sold as nutritional supplements inhibited CT and Escherichia coli heat-labile toxin activity against cultured cells and intestinal loops. CT intoxication was blocked even when the extracts were added an hour after the initial toxin exposure. A specific subset of host-toxin interactions involving both the catalytic CTA1 subunit and the cell-binding CTB pentamer were affected. The extracts blocked toxin binding to the cell surface, prevented unfolding of the isolated CTA1 subunit, inhibited CTA1 translocation to the cytosol, and disrupted the catalytic activity of CTA1. Grape extract could thus potentially serve as a novel therapeutic to prevent or possibly treat cholera.


Assuntos
Toxina da Cólera/antagonistas & inibidores , Cólera/prevenção & controle , Extrato de Sementes de Uva/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vibrio cholerae/fisiologia , Animais , Toxinas Bacterianas/antagonistas & inibidores , Células CHO , Cólera/microbiologia , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Cricetulus , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Enterotoxinas/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/uso terapêutico , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Suínos , Vibrio cholerae/efeitos dos fármacos , Vitis/química
7.
Biol Open ; 1(10): 949-57, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213372

RESUMO

The NF2 gene encodes a tumor suppressor protein known as merlin or schwannomin whose loss of function causes Neurofibromatosis Type 2 (NF2). NF2 is characterized by the development of benign tumors, predominantly schwannomas, in the peripheral nervous system. Merlin links plasma membrane receptors with the actin cytoskeleton and its targeting to the plasma membrane depends on direct binding to the paxillin scaffold protein. Exon 2 of NF2, an exon mutated in NF2 patients and deleted in a mouse model of NF2, encodes the merlin paxillin binding domain (PBD1). Here, we sought to determine the role of PBD1 in regulation of merlin stability and association with plasma membrane receptors and the actin cytoskeleton in Schwann cells. Using a fluorescence-based pulse-chase technique, we measured the half-life of Halo-tagged merlin variants carrying PBD1, exon 2, and exons 2 and 3 deletions in transiently transfected Schwann cells. We found that PBD1 alone was necessary and sufficient to increase merlin's half-life from approximately three to eleven hours. Merlin lacking PBD1 did not form a complex with surface ß1 integrins or associate with the actin cytoskeleton. In addition, direct binding studies using purified merlin and paxillin domains revealed that merlin directly binds paxillin LD3 (leucine-aspartate 3) domain as well as the LD4 and LD5 domains. Together these results demonstrate that a direct interaction between merlin PBD1 and the paxillin LD3-5 domains targets merlin to the plasma membrane where it is stabilized by its association with surface ß1 integrins and cortical actin.

8.
FEBS J ; 274(18): 4825-36, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17714513

RESUMO

Saporin is a type I ribosome-inactivating protein that is often appended with a cell-binding domain to specifically target and kill cancer cells. Urokinase plasminogen activator (uPA)-saporin, for example, is an anticancer toxin that consists of a chemical conjugate between the human uPA and native saporin. Both saporin and uPA-saporin enter the target cell by endocytosis and must then escape the endomembrane system to reach the cytosolic ribosomes. The latter process may represent a rate-limiting step for intoxication and would therefore directly affect toxin potency. In the present study, we document two treatments (shock with dimethylsulfoxide and lipopolyamine coadministration) that generate substantial cellular sensitization to saporin/uPA-saporin. With the use of lysosome-endosome X (LEX)1 and LEX2 mutant cell lines, an endosomal trafficking step preceding cargo delivery to the late endosomes was identified as a major site for the dimethylsulfoxide-facilitated entry of saporin into the cytosol. Dimethylsulfoxide and lipopolyamines are known to disrupt the integrity of endosome membranes, so these reagents could facilitate the rapid movement of toxin from permeabilized endosomes to the cytosol. However, the same pattern of toxin sensitization was not observed for dimethylsulfoxide- or lipopolyamine-treated cells exposed to diphtheria toxin, ricin, or the catalytic A chain of ricin. The sensitization effects were thus specific for saporin, suggesting a novel mechanism of saporin translocation by endosome disruption. Lipopolyamines have been developed as in vivo gene therapy vectors; thus, lipopolyamine coadministration with uPA-saporin or other saporin conjugates could represent a new approach for anticancer toxin treatments.


Assuntos
Antineoplásicos/química , Antineoplásicos/toxicidade , Poliaminas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/toxicidade , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/toxicidade , Animais , Células CHO , Linhagem Celular , Temperatura Baixa , Cricetinae , Cricetulus , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/toxicidade , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Ricina/toxicidade
9.
Glia ; 41(1): 94-104, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12465049

RESUMO

Schwann cell adhesion to basal lamina is essential for peripheral nerve development. beta(1) integrin receptors for extracellular matrix cooperate with other receptors to transmit signals that coordinate cell cycle progression and initiation of differentiation, including myelin-specific gene expression. In Schwann cell/sensory neuron cocultures, beta(1) integrins complex with focal adhesion kinase (FAK), fyn kinase, paxillin, and schwannomin in response to basal lamina adhesion. To study the assembly of this signaling complex in Schwann cells (SCs), we induced beta(1) integrin clustering on suspended cells using an immobilized antibody and recovered a complex containing beta(1) integrin, FAK, paxillin, and schwannomin. In adherent subconfluent cells, the proteins colocalized to filopodia, ruffling membranes and focal contacts. We assessed the role of rhoGTPase in the process of integrin complex assembly by introducing C3 transferase (C3T), a rho inhibitor, into the cells. Although C3T caused dose-dependent morphological abnormalities, FAK, paxillin, and schwannomin were able to coimmunoprecipitate with beta(1) integrin. Additionally, colocalization of FAK, paxillin, and schwannomin with beta(1) integrin in filopodia and small focal contacts remained unchanged. We conclude that SCs do not require active rho to recruit signaling and structural proteins to beta(1) integrins clustered at the plasma membrane. Rho is required to establish large focal adhesions and to spread and stabilize plasma membrane extensions.


Assuntos
Integrina beta1/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , ADP Ribose Transferases/farmacologia , Animais , Toxinas Botulínicas/farmacologia , Soluções Tampão , Adesão Celular , Membrana Celular/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Imuno-Histoquímica , Técnicas de Imunoadsorção , Integrina beta1/química , Substâncias Macromoleculares , Neurofibromina 2/metabolismo , Paxilina , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/antagonistas & inibidores , Proteína rhoB de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...