Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 12(8): e1005069, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27517607

RESUMO

In fast-transcribing prokaryotic genes, such as an rrn gene in Escherichia coli, many RNA polymerases (RNAPs) transcribe the DNA simultaneously. Active elongation of RNAPs is often interrupted by pauses, which has been observed to cause RNAP traffic jams; yet some studies indicate that elongation seems to be faster in the presence of multiple RNAPs than elongation by a single RNAP. We propose that an interaction between RNAPs via the torque produced by RNAP motion on helically twisted DNA can explain this apparent paradox. We have incorporated the torque mechanism into a stochastic model and simulated transcription both with and without torque. Simulation results illustrate that the torque causes shorter pause durations and fewer collisions between polymerases. Our results suggest that the torsional interaction of RNAPs is an important mechanism in maintaining fast transcription times, and that transcription should be viewed as a cooperative group effort by multiple polymerases.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Modelos Teóricos , Transcrição Gênica/genética , Algoritmos , Biologia Computacional , Simulação por Computador , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Processos Estocásticos , Torque , Transcrição Gênica/fisiologia
2.
J Math Biol ; 68(3): 667-700, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23404039

RESUMO

Bio-polymerization processes like transcription and translation are central to proper function of a cell. The speed at which the bio-polymer grows is affected both by the number of pauses of elongation machinery, as well the number of bio-polymers due to crowding effects. In order to quantify these effects in fast transcribing ribosome genes, we rigorously show that a classical traffic flow model is the limit of a mean occupancy ODE model. We compare the simulation of this model to a stochastic model and evaluate the combined effect of the polymerase density and the existence of pauses on the instantaneous transcription rate of ribosomal genes.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Genes de RNAr/fisiologia , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Transcrição Gênica/fisiologia , Simulação por Computador , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...