Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699366

RESUMO

Genome-wide association studies (GWAS) of psychiatric disorders (PD) yield numerous loci with significant signals, but often do not implicate specific genes. Because GWAS risk loci are enriched in expression/protein/methylation quantitative loci (e/p/mQTL, hereafter xQTL), transcriptome/proteome/methylome-wide association studies (T/P/MWAS, hereafter XWAS) that integrate xQTL and GWAS information, can link GWAS signals to effects on specific genes. To further increase detection power, gene signals are aggregated within relevant gene sets (GS) by performing gene set enrichment (GSE) analyses. Often GSE methods test for enrichment of "signal" genes in curated GS while overlooking their linkage disequilibrium (LD) structure, allowing for the possibility of increased false positive rates. Moreover, no GSE tool uses xQTL information to perform mendelian randomization (MR) analysis. To make causal inference on association between PD and GS, we develop a novel MR GSE (MR-GSE) procedure. First, we generate a "synthetic" GWAS for each MSigDB GS by aggregating summary statistics for x-level (mRNA, protein or DNA methylation (DNAm) levels) from the largest xQTL studies available) of genes in a GS. Second, we use synthetic GS GWAS as exposure in a generalized summary-data-based-MR analysis of complex trait outcomes. We applied MR-GSE to GWAS of nine important PD. When applied to the underpowered opioid use disorder GWAS, none of the four analyses yielded any signals, which suggests a good control of false positive rates. For other PD, MR-GSE greatly increased the detection of GO terms signals (2,594) when compared to the commonly used (non-MR) GSE method (286). Some of the findings might be easier to adapt for treatment, e.g., our analyses suggest modest positive effects for supplementation with certain vitamins and/or omega-3 for schizophrenia, bipolar and major depression disorder patients. Similar to other MR methods, when applying MR-GSE researchers should be mindful of the confounding effects of horizontal pleiotropy on statistical inference.

2.
Complex Psychiatry ; 9(1-4): 130-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588130

RESUMO

Background: The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait. Summary: In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing "omic" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs. Key Messages: As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.

3.
Front Genet ; 14: 1191264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415601

RESUMO

Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.

4.
DNA Cell Biol ; 34(3): 220-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25495208

RESUMO

Alcohol dependence (AD) is a neuropsychiatric disorder to which both genetic and environmental factors contribute. Especially, multiple genetic factors are promising to explain the etiology of AD. microRNAs (miRNAs) are members of a family of noncoding small RNAs, which are thought to be responsible for the altered gene expression in neuropsychiatric disorders. We hypothesized that single nucleotide polymorphisms (SNPs) in the miRNA biogenesis pathway may result in dysregulation of miRNA levels inside the cell. The aim of this study was to test an association between miRNA biogenesis gene variants and AD risk. Real-time polymerase chain reaction genotyping experiment was conducted on DNA samples from 123 alcohol-dependent patients and 135 healthy controls. We found that AGO1 rs595961 (χ(2) = 9.066, p = 0.003; odds ratio [OR] = 0.459, 95% confidence interval [CI]: 0.275-0.768) and AGO2 rs4961280 (χ(2) = 4.111, p = 0.043; OR = 0.590, 95% CI: 0.353-0.986) G alleles have significantly altered the risk for AD, and also there is a significant association of GEMIN4 rs910924 (χ(2) = 5.291, p = 0.021; OR = 1.913, 95% CI: 1.094-3.344) T allele with the risk for AD. We also found statistically significant difference in AGO1 rs595961 (χ(2) = 11.139, p = 0.001) and DGCR8 rs1640299 (χ(2) = 13.001, p = 0.002) genotype frequencies between case-control groups. This is the first study to investigate the effects of SNPs in the miRNA biogenesis pathway on AD risk. In conclusion, we identified a significant association of miRNA biogenesis genes with altered AD risk, and these results could be a guide to research on the role of miRNAs in AD in the future.


Assuntos
Alcoolismo/genética , Vias Biossintéticas/genética , Predisposição Genética para Doença/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Proteínas Argonautas/genética , Proteína DEAD-box 20/genética , RNA Helicases DEAD-box/genética , Fatores de Iniciação em Eucariotos/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Carioferinas/genética , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Razão de Chances , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Fatores de Risco , Adulto Jovem , Proteína ran de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...