Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 49(4): 782-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23099006

RESUMO

AIM: To determine the maximum tolerated dose (MTD) of OSI-930 that can be combined with erlotinib, and establish recommended phase 2 doses when both agents are administered daily in patients with advanced solid tumours. PATIENTS AND METHODS: Eligible patients with advanced solid tumours were enrolled into this standard "three+three" dose escalation study. Study treatment commenced on day 1 with OSI-930, and erlotinib was introduced on day 8. PK profiles of OSI-930, erlotinib and its active metabolite, OSI-420, were determined. Changes in sVEGFR2 as a pharmacodynamic biomarker of OSI-930 activity were assessed. RESULTS: Twenty one patients were enrolled to 1 of 3 cohorts: 200 mg OSI-930 BID+100 mg erlotinib QD; 200 mg OSI-930 BID+150 mg erlotinib QD; 300 mg OSI-930 BID+150 mg erlotinib QD. The most common adverse events were anorexia (85%), diarrhoea (75%), rash (70%) and lethargy (65%). The MTD was not reached but the onset of cumulative toxicity necessitating dose modification after the 28-d DLT assessment period was common at the highest dose level. A PK interaction was identified with co-administration of both agents resulting in a two-fold increase in OSI-930 exposure. Pharmacodynamic activity was observed with a decline in sVEGFR levels detected in all patients. Ten patients had disease stabilization (median duration 119 d). CONCLUSIONS: 200 mg OSI-930 BID+150 mg erlotinib QD were the recommended doses for further evaluation of this combination.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Quinolinas/uso terapêutico , Tiofenos/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica , Área Sob a Curva , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Prognóstico , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética , Quinolinas/farmacocinética , Tiofenos/farmacocinética , Distribuição Tecidual
2.
Leukemia ; 21(3): 439-45, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17205056

RESUMO

Activating internal tandem duplication (ITD) insertions in the juxtamembrane domain of the FLT3 tyrosine kinase are found in about one fourth of patients with acute myeloid leukemia and have been shown to be an independent negative prognostic factor for survival. We show that sorafenib (BAY 43-9006, Nexavar) potently inhibits FLT3 enzymatic and signaling activities. In HEK293 cells stably transfected with FLT3-WT or FLT3-ITD, sorafenib blocked basal and ligand dependent FLT3-mediated tyrosine autophosphorylation as well as extracellular signal-regulated kinase1/2 and Stat5 phosphorylation. In leukemia cell lines MV4-11 and EOL-1, sorafenib treatment resulted in decreased cell proliferation and inhibition of FLT3 signaling. The growth of the FLT3-independent RS4-11 cell line was only weakly inhibited by sorafenib. Cell cycle arrest and induction of apoptosis were observed upon treatment with sorafenib in MV4-11 and EOL-1 cells. The antitumor efficacy of sorafenib was evaluated against the MV4-11 leukemia grown subcutaneously in NCr nu/nu mice. Doses of 3 and 10 mg/kg administered orally for 14 days resulted in six and nine out of 10 animals with complete responses, respectively. The demonstration that sorafenib exhibits potent target inhibition and efficacy in FLT3-driven models suggests that this compound may have a therapeutic benefit for patients with FLT3-driven leukemias.


Assuntos
Antineoplásicos/farmacologia , Benzenossulfonatos/farmacologia , Leucemia Mieloide/tratamento farmacológico , Proteínas Mutantes/fisiologia , Proteínas de Neoplasias/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzenossulfonatos/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Rim , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Camundongos , Camundongos Nus , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Niacinamida/análogos & derivados , Compostos de Fenilureia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Proteínas Recombinantes de Fusão/fisiologia , Sorafenibe , Sequências de Repetição em Tandem , Transfecção , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética
3.
Biochem Biophys Res Commun ; 272(3): 936-45, 2000 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-10860854

RESUMO

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are involved in signaling pathways triggered by members of the TNF receptor (TNFR) family and other cell surface proteins. After recruitment to a receptor, TRAFs initiate formation of multiprotein complexes that induce downstream events, such as translocation of transcription factor nuclear factor kappaB (NF-kappaB) and activation of c-Jun N-terminal kinase (JNK). Several proteins in these complexes play important roles in regulation of apoptosis. However, the fate of TRAF-containing complexes once assembled in response to receptor multimerization is not understood. In this report, we demonstrate that crosslinking of TNFR family members or interaction of TRAF2 with the cytoplasmic protein A20 leads to intracellular translocation of TRAF2. This redistribution leads to depletion of the cytoplasmic pool of TRAF2. The ratio between soluble and insoluble TRAF2 determines the sensitivity of cells to TNF-alpha-induced apoptosis and may play an important role in limiting further TRAF-dependent signal transduction.


Assuntos
Apoptose , Proteínas/metabolismo , Antígenos CD , Apoptose/efeitos dos fármacos , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Desoxirribonuclease I/metabolismo , Tolerância a Medicamentos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Antígeno Ki-1/química , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares , Concentração Osmolar , Ligação Proteica/efeitos dos fármacos , Proteínas/genética , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Receptores OX40 , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Fator 2 Associado a Receptor de TNF , Transfecção , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia
5.
Mol Cell Biol ; 17(3): 1535-42, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9032281

RESUMO

CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell.


Assuntos
Antígeno Ki-1/genética , NF-kappa B/fisiologia , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Antígenos CD28/genética , Linhagem Celular , Humanos , Luciferases/genética , Camundongos , Proteínas/genética , Proteínas Recombinantes de Fusão , Deleção de Sequência , Fator 1 Associado a Receptor de TNF , Fator 2 Associado a Receptor de TNF , Fator 3 Associado a Receptor de TNF
6.
EMBO J ; 15(11): 2685-94, 1996 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-8654366

RESUMO

The baculovirus inhibitor of apoptosis gene, iap, can impede cell death in insect cells. Here we show that iap can also prevent cell death in mammalian cells. The ability of iap to regulate programmed cell death in widely divergent species raised the possibility that cellular homologs of iap might exist. Consistent with this hypothesis, we have isolated Drosophila and human genes which encode IAP-like proteins (dILP and hILP). Like IAP, both dILP and hILP contain amino-terminal baculovirus IAP repeats (BIRs) and carboxy-terminal RING finger domains. Human ilp encodes a widely expressed cytoplasmic protein that can suppress apoptosis in transfected cells. An analysis of the expressed sequence tag database suggests that hilp is one of several human genes related to iap. Together these data suggest that iap and related cellular genes play an evolutionarily conserved role in the regulation of apoptosis.


Assuntos
Apoptose , Baculoviridae/genética , Proteínas de Drosophila , Proteínas/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/química , Drosophila melanogaster/genética , Expressão Gênica , Genes , Humanos , Proteínas Inibidoras de Apoptose , Dados de Sequência Molecular , RNA Mensageiro/genética , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
7.
J Biol Chem ; 271(22): 12852-8, 1996 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-8662842

RESUMO

CD30 is a member of the tumor necrosis factor (TNF) receptor family of proteins. CD30 can regulate proliferation of lymphocytes and may also play an important role in human immunodeficiency virus replication. However, little is known about CD30 signal transduction. We performed a yeast two-hybrid library screen with the cytoplasmic domain of CD30 and isolated multiple independent cDNAs encoding human tumor necrosis factor receptor-associated factor (TRAF) 1, TRAF2, and CRAF1 (TRAF3). The ability of TRAF1, TRAF2, and CRAF1 to associate with CD30 was confirmed using an in vitro coprecipitation assay, further demonstrating that the interaction was specific and direct. The TRAF-binding domain of CD30 was mapped to the COOH-terminal 36 amino acid residues, which contained two independent binding sites. CRAF1 bound only a single site, which contained the sequence PEQET, whereas TRAF1 and TRAF2 were capable of binding to either the PEQET site or an additional downstream domain. These data indicate that the TRAF protein binding pattern of CD30 differs from other TNF receptor family members and suggest that signaling specificity through TNF receptor family proteins may be achieved through differences in their abilities to bind TRAF proteins.


Assuntos
Antígeno Ki-1/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Humanos , Antígeno Ki-1/química , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Fator 1 Associado a Receptor de TNF , Fator 2 Associado a Receptor de TNF
8.
J Virol ; 69(7): 4323-30, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7769693

RESUMO

Transcriptional activation of the mouse c-fos gene by the adenovirus 243-amino-acid E1A protein requires a binding site for transcription factor YY1 located at -54 of the c-fos promoter. YY1 normally represses transcription of c-fos, and this repression depends on the presence of a cyclic AMP (cAMP) response element located immediately upstream of the -54 YY1 DNA-binding site. This finding suggested that the mechanism of transcriptional repression by YY1 might involve a direct interaction with members of the ATF/CREB family of transcription factors. In vitro and in vivo binding assays were used to demonstrate that YY1 can interact with ATF/CREB proteins, including CREB, ATF-2, ATFa1, ATFa2, and ATFa3. Structure-function analyses of YY1 and ATFa2 revealed that the C-terminal zinc finger domain of YY1 is necessary and sufficient for binding to ATFa2 and that the basic-leucine zipper region of ATFa2 is necessary and sufficient for binding to YY1. Overexpression of YY1 in HeLa cells resulted in repression of a mutant c-fos chloramphenicol acetyltransferase reporter that lacked binding sites for YY1, suggesting that repression can be triggered through protein-protein interactions with ATF/CREB family members. Consistent with this finding, repression was relieved upon removal of the upstream cAMP response element. These data support a model in which YY1 binds simultaneously to its own DNA-binding site in the c-fos promoter and also to adjacent DNA-bound ATF/CREB proteins in order to effect repression. They further suggest that the ATF/CREB-YY1 complex serves as a target for the adenovirus 243-amino-acid E1A protein.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Genes fos , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Dedos de Zinco , Fator 2 Ativador da Transcrição , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica , DNA/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Fatores de Ligação G-Box , Células HeLa , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Relação Estrutura-Atividade , Fator de Transcrição YY1
9.
J Virol ; 69(4): 2333-40, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7884879

RESUMO

Transcriptional activation of the c-fos gene in mouse S49 cells by the adenovirus 243-amino-acid E1A protein depends on domains of E1A that are also required for transformation and that bind the cellular protein p300. Activation additionally depends on stimulation of endogenous cyclic AMP (cAMP)-dependent protein kinase by analogs or inducers of cAMP. Transient transfection assays were used to analyze the c-fos promoter for sequences that confer responsiveness to E1A. Linker substitution and point mutants revealed that transcriptional activation by E1A depended on a cAMP response element (CRE) located at -67 relative to the start site of transcription and a neighboring binding site for transcription factor YY1 located at -54. A 22-bp sequence containing the -67 CRE and the -54 YY1 site was sufficient to confer responsiveness to a minimal E1B promoter and was termed the c-fos E1A response element (ERE). Function of the c-fos ERE depended on both the CRE and the YY1 site, since mutation of either site resulted in a loss of responsiveness to E1A. These results imply a specific functional interaction between CRE-binding proteins, transcription factor YY1, and E1A in the regulation of the c-fos gene.


Assuntos
Proteínas E1A de Adenovirus , Genes fos , Regiões Promotoras Genéticas , Fatores Ativadores da Transcrição , Proteínas E1A de Adenovirus/metabolismo , Animais , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção , Fator de Transcrição YY1
10.
J Virol ; 66(10): 5849-59, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1326646

RESUMO

The 243R E1A protein can act in synergy with cyclic AMP to induce AP-1 DNA-binding activity and c-fos mRNA in mouse S49 cells. A series of deletion mutants was used to identify two domains of the 243R protein that were required for these effects. Interestingly, these domains correlated precisely with regions known to be necessary for E1A-mediated transformation. One domain was located at the N terminus of E1A. The other domain spanned residues 36 to 81, corresponding to conserved region 1 of E1A. S49 cellular proteins that associate with E1A were coimmunoprecipitated with anti-E1A antibody. These included the previously identified proteins p300, p130, p107, p105Rb, and cyclin A. In addition, proteins of 90 kDa and a series of proteins in the 120- to 170-kDa range were identified. Binding of p300, p90, and the 120- to 170-kDa proteins was abolished in cells expressing mutants of E1A that were unable to induce AP-1 DNA-binding activity and c-fos mRNA. These data strongly suggest that specific cellular E1A-binding proteins are involved in the induction of AP-1 DNA-binding activity and c-fos mRNA by the synergistic action of the 243R E1A protein and cyclic AMP and that these transcriptional events are related to the transformation process.


Assuntos
AMP Cíclico/farmacologia , DNA/metabolismo , Proteínas Oncogênicas Virais/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/biossíntese , Transformação Genética , Proteínas Precoces de Adenovirus , Sequência de Aminoácidos , Animais , Sequência de Bases , Bucladesina/farmacologia , Linhagem Celular , Genes fos , Camundongos , Dados de Sequência Molecular , Testes de Precipitina
11.
Proc Natl Acad Sci U S A ; 88(9): 3957-61, 1991 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-1850843

RESUMO

Products of the adenovirus E1A gene can act synergistically with cAMP to activate transcription of several viral early genes and the cellular genes c-fos and jun-B. Transcription factor AP-1-binding activity is also induced by the combined action of E1A and cAMP. Mouse S49 cells were infected with adenovirus variants expressing either the 243- or 289-amino acid E1A protein and treated with the cAMP analog dibutyryl-cAMP. Significant E1A-dependent induction of c-fos mRNA and AP-1-binding activity was observed in cells expressing either E1A protein. These effects absolutely required the presence of cAMP. In contrast, the 243-amino acid protein was a poor activator of the viral early genes E2 and E4 compared with the 289-amino acid protein. These data suggest that the 243- and 289-amino acid E1A proteins both interact functionally with the cAMP signaling system to activate transcription of a cellular gene and AP-1-binding activity. The mechanism involved in this process is probably different from the mechanism of transcriptional activation of viral genes.


Assuntos
AMP Cíclico/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Proteínas Oncogênicas Virais/fisiologia , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Adenoviridae/genética , Proteínas Precoces de Adenovirus , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Técnicas In Vitro , Camundongos , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas c-jun , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...