Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 19(5): 1706-11, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23239142

RESUMO

Second-generation cobalt and zinc coordination architectures were obtained through efforts to stabilize extremely sensitive and energetic transition-metal hydrazine perchlorate ionic polymers. Partial ligand substitution by the tridentate hydrazinecarboxylate anion afforded polymeric 2D-sheet structures never before observed for energetic materials. Carefully balanced reaction conditions allowed the retention of the noncoordinating perchlorate anion in the presence of a strongly chelating hydrazinecarboxylate ligand. High-quality X-ray single-crystal structure determination revealed that the metal coordination preferences lead to different structural motifs and energetic properties, despite the nearly isoformulaic nature of the two compounds. Energetic tests indicate highly decreased sensitivity and DFT calculations suggest a high explosive performance for these remarkable structures.

2.
Phys Chem Chem Phys ; 14(10): 3316-22, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22298156

RESUMO

Computational studies of condensed-phase chemical reactions are challenging in part because of complexities in understanding the effects of the solvent environment on the reacting chemical species. Such studies are further complicated due to the demanding computational resources required to implement high-level ab initio quantum chemical methods when considering the solvent explicitly. Here, we use first-principles molecular dynamics simulations to examine condensed-phase decontamination reactions of V-type nerve agents in an explicit aqueous solvent. Our results include a detailed study of hydrolysis, base-hydrolysis, and nucleophilic oxidation of both VX and R-VX, as well as their protonated counterparts (i.e., VXH(+) and R-VXH(+)). The decontamination mechanisms and chemical reaction energy barriers, as determined from our simulations, are found to be in good agreement with experiment. The results demonstrate the applicability of using such simulations to assist in understanding new decontamination technologies or other applications that require computational screening of condensed-phase chemical reaction mechanisms.


Assuntos
Substâncias para a Guerra Química/química , Simulação de Dinâmica Molecular , Compostos Organotiofosforados/química , Hidrólise , Modelos Moleculares , Estrutura Molecular , Oxirredução , Solventes/química , Água/química
3.
J Am Chem Soc ; 134(3): 1422-5, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22191717

RESUMO

Energetic materials have been used for nearly two centuries in military affairs and to cut labor costs and expedite laborious processes in mining, tunneling, construction, demolition, and agriculture, making a tremendous contribution to the world economy. Yet there has been little advancement in the development of altogether new energetic motifs despite long-standing research efforts to develop superior materials. We report the discovery of new energetic compounds of exceptionally high energy content and novel polymeric structure which avoid the use of lead and mercury salts common in conventional primary explosives. Laboratory tests indicate the remarkable performance of these Ni- and Co-based energetic materials, while DFT calculations indicate that these are possibly the most powerful metal-based energetic materials known to date, with heats of detonation comparable with those of the most powerful organic-based high explosives currently in use.

4.
J Chem Phys ; 129(12): 124903, 2008 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19045061

RESUMO

Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

5.
J Chem Phys ; 128(1): 014903, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18190222

RESUMO

Recently, we demonstrated via large-scale molecular dynamics simulations a "coexistence period" in polymer melt ordering before crystallization, where nucleation and growth mechanisms coexist with a phase-separation mechanism [Gee et al., Nat. Mater. 5, 39 (2006)]. Here, we present an extension of this work, where we analyze the directional displacements as a measure of the mobility of monomers as they order during crystallization over more than 100 ns of simulation time. It is found that the polymer melt, after quenching, rapidly separates into many ordered hexagonal domains separated by amorphous regions, where surprisingly, the magnitude of the monomer's displacement in the ordered state, parallel to the domain axial direction, is similar to its magnitude in the melt. The monomer displacements in the domain's lateral direction are found to decrease during the time of the simulation. The ordered hexagonal domains do not align into uniform lamellar structures during the timescales of our simulations.

6.
J Chem Phys ; 126(4): 044510, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17286490

RESUMO

A class II atomistic force field with Lennard-Jones 6-9 nonbond interactions is used to investigate equations of state (EOS) for important high explosive detonation products N(2) and H(2)O in the temperature range of 700-2500 K and pressure range of 0.1-10 GPa. A standard sixth order parameter-mixing scheme is then employed to study a 2:1 (molar) H(2)O:N(2) mixture, to investigate, in particular, the possibility of phase separation under detonation conditions. The simulations demonstrate several important results, including (i) the accuracy of computed EOS for both N(2) and H(2)O over the entire range of temperature and pressure considered, (ii) accurate mixing-demixing phase boundary as compared to experimental data, and (iii) the departure of mixing free energy from that predicted by ideal mixing law. The results provide comparison and guidance to state-of-the-art chemical kinetic models.

7.
J Phys Chem B ; 110(8): 3588-94, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16494414

RESUMO

Molecular dynamics simulations of bulk melts of poly(dimethylsiloxane) (PDMS) are utilized to study chain conformation and ordering under constant stress uniaxial extension at room temperature. We find that large extensions induce chain ordering in the direction of applied stress. During the extension, we also find that voids are created via a cavitation mechanism. At the end of our simulations, by visual inspection, we distinguish cavity, fibril, and amorphous regions that coexist together. The surrounding material about the formed cavities is fibril-like, while the remaining material remains amorphous. We also estimate the surface energy of the cavity. The cavity size continually increases in the dimension of applied stress but saturates in the lateral dimensions, most likely due to the finite size of the system. Despite chain orientation and ordering in the direction of applied stress, crystallization is absent in the time and stress range of our simulation. This study represents a baseline for the future study of mechanical properties of PDMS melts enriched with fillers under stress.

8.
Nat Mater ; 5(1): 39-43, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16380730

RESUMO

Many polymeric materials crystallize when cooled below their melting temperature. Although progress has been made in our understanding of the crystallization process through both experimental and theoretical efforts, these studies have focused mainly on the crystal nucleation and growth mechanism, where critical nuclei are formed from a metastable state during the first stages of crystallization, leading ultimately to the growth of crystal domains. Attention has also been given to the structure during the precrystallization (induction period). A pretransition state occurring before crystallization has been characterized as an unstable phase separation initiated by density and orientational fluctuations. These fluctuations are caused by an increase in the average length of rigid trans segments along the polymer backbone during the induction period. These observations are consistent with the theory proposed in ref. 14 on the isotropic-to-nematic transition of polymer liquid crystals, that is, the parallel ordering of polymers is caused by an increase in chain rigidity. Here we use large-scale computer simulations to investigate melts of polymers in the early ordering stages (induction period) before crystallization. In the ordered domains we identify growing dense regions similar to smectic liquid crystals. Our simulations reveal a 'coexistence period' in the ordering before crystallization, where nucleation and growth mechanisms coexist with a phase-separation mechanism.


Assuntos
Modelos Químicos , Polímeros/química , Cristalização
9.
J Chem Phys ; 123(14): 144702, 2005 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-16238411

RESUMO

We performed ab initio quantum-chemical studies for the development of intra- and intermolecular interaction potentials for formic acid for use in molecular-dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen-bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular-dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular-dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.

10.
Phys Rev Lett ; 94(6): 065505, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15783746

RESUMO

We report Raman, infrared, and x-ray diffraction (XRD) measurements, along with ab initio calculations on formic acid (FA) under pressure up to 50 GPa. We find an infinite chain Pna2(1) structure to be a high-pressure phase at room temperature. Our data indicate the symmetrization and a partially covalent character of the intrachain hydrogen bonds above approximately 20 GPa. Raman spectra and XRD patterns indicate a loss of long-range order at pressures above 40 GPa, with a large hysteresis upon decompression. We attribute this behavior to a three-dimensional polymerization of FA.

11.
J Chem Phys ; 120(15): 7059-66, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15267608

RESUMO

An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally.


Assuntos
Trinitrobenzenos/química , Físico-Química/métodos , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Modelos Estatísticos , Modelos Teóricos , Conformação Molecular , Pressão , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...