Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother ; 44(7): 264-275, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928928

RESUMO

LY3381916 is an orally available, highly selective, potent inhibitor of indoleamine 2,3-dioxygenase 1. This study explored the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of LY3381916 monotherapy and in combination with a programmed death-ligand 1 (PD-L1) inhibitor (LY3300054) in patients with advanced solid tumors. During dose escalation, patients received escalating doses of LY3381916 at 60-600 mg once daily (qd) and 240 mg twice daily in monotherapy (n=21) and in combination with PD-L1 inhibitor at 700 mg every 2 weeks (n=21). A modified toxicity probability interval method was used to guide dose escalation. Dose-limiting toxicities occurred in 3 patients; 1 at LY3381916 240 mg twice daily (alanine aminotransferase/aspartate aminotransferase increase and systemic inflammatory response syndrome) and 2 at LY3381916 240 mg qd in combination with PD-L1 inhibitor (fatigue and immune-related hepatitis). LY3381916, at the recommended phase II dose, 240 mg qd, in combination with PD-L1 inhibitor, produced maximal inhibition of indoleamine 2,3-dioxygenase 1 activity in plasma and tumor tissue, and led to an increase of CD8 T cells in tumor tissue. In the combination dose expansion cohorts, 14 triple-negative breast cancer and 4 non-small cell lung cancer patients were enrolled. Treatment-related liver toxicity (grade ≥2 alanine aminotransferase/aspartate aminotransferase increase or immune-related hepatitis) was the most prominent adverse event in triple-negative breast cancer patients (n=5, 35.7%). Best response was stable disease. These preliminary data suggest an alternative dose level of LY3381916 is needed for the combination with PD-L1 inhibitor. The combination clinical activity was limited in this study.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Cinurenina/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Clin Cancer Res ; 25(23): 7175-7188, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409612

RESUMO

PURPOSE: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination. Although the clinical data suggest a positive interaction between pemetrexed-based chemotherapy and immunotherapy, the underlying mechanism remains unknown. EXPERIMENTAL DESIGN: Mouse tumor models (MC38, Colon26) and high-content biomarker studies (flow cytometry, Quantigene Plex, and nCounter gene expression analysis) were deployed to obtain insights into the mechanistic rationale behind the efficacy observed with pemetrexed/anti-PD-L1 combination. ICD in tumor cell lines was assessed by calreticulin and HMGB-1 immunoassays, and metabolic function of primary T cells was evaluated by Seahorse analysis. RESULTS: Pemetrexed treatment alone increased T-cell activation in mouse tumors in vivo, robustly induced ICD in mouse tumor cells and exerted T-cell-intrinsic effects exemplified by augmented mitochondrial function and enhanced T-cell activation in vitro. Increased antitumor efficacy and pronounced inflamed/immune activation were observed when pemetrexed was combined with anti-PD-L1. CONCLUSIONS: Pemetrexed augments systemic intratumor immune responses through tumor intrinsic mechanisms including immunogenic cell death, T-cell-intrinsic mechanisms enhancing mitochondrial biogenesis leading to increased T-cell infiltration/activation along with modulation of innate immune pathways, which are significantly enhanced in combination with PD-1 pathway blockade.See related commentary by Buque et al., p. 6890.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Ácido Fólico/metabolismo , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Mitocôndrias/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Antígeno B7-H1/imunologia , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Consumo de Oxigênio , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 8(1): 15458, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337562

RESUMO

AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos , Inibidores Enzimáticos/farmacologia , Hidroximetil e Formil Transferases/antagonistas & inibidores , Neoplasias Pulmonares , Complexos Multienzimáticos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Nucleotídeo Desaminases/antagonistas & inibidores , Ribonucleotídeos , Aminoimidazol Carboxamida/farmacocinética , Aminoimidazol Carboxamida/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Hidroximetil e Formil Transferases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Complexos Multienzimáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Nucleotídeo Desaminases/metabolismo , Ribonucleotídeos/farmacocinética , Ribonucleotídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Bioorg Med Chem Lett ; 28(10): 1887-1891, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29655979

RESUMO

During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK2. A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3ß in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinonas/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade , Transplante Heterólogo
5.
J Med Chem ; 60(23): 9599-9616, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29072452

RESUMO

A hallmark of cancer is unbridled proliferation that can result in increased demand for de novo synthesis of purine and pyrimidine bases required for DNA and RNA biosynthesis. These synthetic pathways are frequently upregulated in cancer and involve various folate-dependent enzymes. Antifolates have a proven record as clinically used oncolytic agents. Our recent research efforts have produced LSN 3213128 (compound 28a), a novel, selective, nonclassical, orally bioavailable antifolate with potent and specific inhibitory activity for aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), an enzyme in the purine biosynthetic pathway. Inhibition of AICARFT with compound 28a results in dramatic elevation of 5-aminoimidazole 4-carboxamide ribonucleotide (ZMP) and growth inhibition in NCI-H460 and MDA-MB-231met2 cancer cell lines. Treatment with this inhibitor in a murine based xenograft model of triple negative breast cancer (TNBC) resulted in tumor growth inhibition.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/uso terapêutico , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Feminino , Antagonistas do Ácido Fólico/farmacocinética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tiofenos/química , Tiofenos/farmacocinética , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Mol Cancer Ther ; 16(12): 2677-2688, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054982

RESUMO

NAMPT, an enzyme essential for NAD+ biosynthesis, has been extensively studied as an anticancer target for developing potential novel therapeutics. Several NAMPT inhibitors have been discovered, some of which have been subjected to clinical investigations. Yet, the on-target hematological and retinal toxicities have hampered their clinical development. In this study, we report the discovery of a unique NAMPT inhibitor, LSN3154567. This molecule is highly selective and has a potent and broad spectrum of anticancer activity. Its inhibitory activity can be rescued with nicotinic acid (NA) against the cell lines proficient, but not those deficient in NAPRT1, essential for converting NA to NAD+ LSN3154567 also exhibits robust efficacy in multiple tumor models deficient in NAPRT1. Importantly, this molecule when coadministered with NA does not cause observable retinal and hematological toxicities in the rodents, yet still retains robust efficacy. Thus, LSN3154567 has the potential to be further developed clinically into a novel cancer therapeutic. Mol Cancer Ther; 16(12); 2677-88. ©2017 AACR.


Assuntos
Citocinas/antagonistas & inibidores , Niacina/uso terapêutico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Epitélio Pigmentado da Retina/efeitos dos fármacos , Animais , Humanos , Camundongos , Niacina/farmacologia , Epitélio Pigmentado da Retina/patologia
7.
J Biol Chem ; 290(25): 15812-15824, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25944913

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) has been extensively studied due to its essential role in NAD(+) biosynthesis in cancer cells and the prospect of developing novel therapeutics. To understand how NAMPT regulates cellular metabolism, we have shown that the treatment with FK866, a specific NAMPT inhibitor, leads to attenuation of glycolysis by blocking the glyceraldehyde 3-phosphate dehydrogenase step (Tan, B., Young, D. A., Lu, Z. H., Wang, T., Meier, T. I., Shepard, R. L., Roth, K., Zhai, Y., Huss, K., Kuo, M. S., Gillig, J., Parthasarathy, S., Burkholder, T. P., Smith, M. C., Geeganage, S., and Zhao, G. (2013) Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD(+) biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500-3511). Due to technical limitations, we failed to separate isotopomers of phosphorylated sugars. In this study, we developed an enabling LC-MS methodology. Using this, we confirmed the previous findings and also showed that NAMPT inhibition led to accumulation of fructose 1-phosphate and sedoheptulose 1-phosphate but not glucose 6-phosphate, fructose 6-phosphate, and sedoheptulose 7-phosphate as previously thought. To investigate the metabolic basis of the metabolite formation, we carried out biochemical and cellular studies and established the following. First, glucose-labeling studies indicated that fructose 1-phosphate was derived from dihydroxyacetone phosphate and glyceraldehyde, and sedoheptulose 1-phosphate was derived from dihydroxyacetone phosphate and erythrose via an aldolase reaction. Second, biochemical studies showed that aldolase indeed catalyzed these reactions. Third, glyceraldehyde- and erythrose-labeling studies showed increased incorporation of corresponding labels into fructose 1-phosphate and sedoheptulose 1-phosphate in FK866-treated cells. Fourth, NAMPT inhibition led to increased glyceraldehyde and erythrose levels in the cell. Finally, glucose-labeling studies showed accumulated fructose 1,6-bisphosphate in FK866-treated cells mainly derived from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. Taken together, this study shows that NAMPT inhibition leads to attenuation of glycolysis, resulting in further perturbation of carbohydrate metabolism in cancer cells. The potential clinical implications of these findings are also discussed.


Assuntos
Metabolismo dos Carboidratos , Citocinas/metabolismo , NAD/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfatos Açúcares/metabolismo , Acrilamidas/farmacologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Humanos , Espectrometria de Massas , NAD/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Piperidinas/farmacologia , Fosfatos Açúcares/genética
8.
Cancer Res ; 75(1): 40-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25388284

RESUMO

Vascular tumors are endothelial cell neoplasms whose mechanisms of tumorigenesis are poorly understood. Moreover, current therapies, particularly those for malignant lesions, have little beneficial effect on clinical outcomes. In this study, we show that endothelial activation of the Akt1 kinase is sufficient to drive de novo tumor formation. Mechanistic investigations uncovered opposing functions for different Akt isoforms in this regulation, where Akt1 promotes and Akt3 inhibits vascular tumor growth. Akt3 exerted negative effects on tumor endothelial cell growth and migration by inhibiting activation of the translation regulatory kinase S6-Kinase (S6K) through modulation of Rictor expression. S6K in turn acted through a negative feedback loop to restrain Akt3 expression. Conversely, S6K signaling was increased in vascular tumor cells where Akt3 was silenced, and the growth of these tumor cells was inhibited by a novel S6K inhibitor. Overall, our findings offer a preclinical proof of concept for the therapeutic utility of treating vascular tumors, such as angiosarcomas, with S6K inhibitors.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Vasculares/enzimologia , Neoplasias Vasculares/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação
9.
Eur J Cancer ; 50(5): 867-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24440085

RESUMO

BACKGROUND: LY2584702 tosylate (hereafter referred to as LY2584702) is a potent, highly selective adenosine triphosphate (ATP) competitive inhibitor against p70 S6 kinase, a downstream component of the phosphatidylinositol-3-kinase signalling pathway which regulates cell proliferation and survival. LY2584702 exhibited anti-tumour activity in preclinical analysis. METHODS: Patients with advanced solid tumours were treated with LY2584702 orally on a 28-day cycle until the criteria for maximum tolerated dose (MTD) were met. Skin biopsies were collected for pharmacodynamic analysis, and levels of phospho-S6 protein were examined. The primary objective was to determine a phase II dose and schedule with secondary objectives of observing safety and tolerability. Dose escalation was based upon Common Terminology Criteria for Adverse Events Version 3.0. RESULTS: Thirty-four patients were enrolled onto this phase I study and treated with LY2584702 on a QD (once-daily) or BID (twice-daily) dosing schedule. Part A dose escalation (n=22) began with 300 mg BID (n=2). Due to toxicity, this was scaled back to doses of 25mg (n=3), 50 mg (n=8), 100mg (n=3), and 200 mg (n=6) QD. Part B dose escalation (n=12) included 50 mg (n=3), 75 mg (n=3), and 100 mg (n=6) BID. Seven patients experienced dose-limiting toxicity (DLT). All DLTs were Grade 3 and included vomiting, increased lipase, nausea, hypophosphataemia, fatigue and pancreatitis. CONCLUSION: The MTD was determined to be 75 mg BID or 100mg QD. No responses were observed at these levels. Pharmacokinetic analysis revealed substantial variability in exposure and determined that LY2584702 treatment was not dose proportional with increasing dose.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Colesterol/metabolismo , Esquema de Medicação , Fadiga/induzido quimicamente , Feminino , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/efeitos adversos , Pirazóis/farmacocinética , Pirazóis/uso terapêutico , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Pele/metabolismo , Fatores de Tempo , Resultado do Tratamento , Vômito/induzido quimicamente
10.
J Biol Chem ; 288(5): 3500-11, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239881

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for cellular metabolism, energy production, and DNA repair. NAMPT has been extensively studied because of its critical role in these cellular processes and the prospect of developing therapeutics against the target, yet how it regulates cellular metabolism is not fully understood. In this study we utilized liquid chromatography-mass spectrometry to examine the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and serine biosynthesis in cancer cells and tumor xenografts. We show for the first time that NAMPT inhibition leads to the attenuation of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step due to the reduced availability of NAD(+) for the enzyme. The attenuation of glycolysis results in the accumulation of glycolytic intermediates before and at the glyceraldehyde 3-phosphate dehydrogenase step, promoting carbon overflow into the pentose phosphate pathway as evidenced by the increased intermediate levels. The attenuation of glycolysis also causes decreased glycolytic intermediates after the glyceraldehyde 3-phosphate dehydrogenase step, thereby reducing carbon flow into serine biosynthesis and the TCA cycle. Labeling studies establish that the carbon overflow into the pentose phosphate pathway is mainly through its non-oxidative branch. Together, these studies establish the blockade of glycolysis at the glyceraldehyde 3-phosphate dehydrogenase step as the central metabolic basis of NAMPT inhibition responsible for ATP depletion, metabolic perturbation, and subsequent tumor growth inhibition. These studies also suggest that altered metabolite levels in tumors can be used as robust pharmacodynamic markers for evaluating NAMPT inhibitors in the clinic.


Assuntos
Inibidores Enzimáticos/farmacologia , NAD/biossíntese , Neoplasias/metabolismo , Neoplasias/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Acrilamidas/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Isótopos de Carbono , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Marcação por Isótopo , Camundongos , Camundongos SCID , Nicotinamida Fosforribosiltransferase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Piperidinas/farmacologia , Serina/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Clin Invest ; 117(9): 2638-48, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17786246

RESUMO

Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/terapia , Biossíntese de Proteínas/genética , Animais , Apoptose , Sequência de Bases , Células Cultivadas , Células Endoteliais/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 65(16): 7462-9, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16103100

RESUMO

Activation of protein kinase Cbeta (PKCbeta) has been repeatedly implicated in tumor-induced angiogenesis. The PKCbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCbeta has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3betaser9, ribosomal protein S6(S240/244), and AKT(Thr308). Oral dosing with Enzastaurin to yield plasma concentrations similar to those achieved in clinical trials significantly suppresses the growth of human glioblastoma and colon carcinoma xenografts. As in cultured tumor cells, Enzastaurin treatment suppresses the phosphorylation of GSK3beta in these xenograft tumor tissues. Enzastaurin treatment also suppresses GSK3beta phosphorylation to a similar extent in peripheral blood mononuclear cells (PBMCs) from these treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3beta phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3beta phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Indóis/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Feminino , Glioblastoma/enzimologia , Glioblastoma/patologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteína Quinase C beta , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteína S6 Ribossômica/antagonistas & inibidores , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Res ; 64(11): 3761-6, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15172981

RESUMO

The mechanisms of resistance to the antimetabolite gemcitabine in non-small cell lung cancer have not been extensively evaluated. In this study, we report the generation of two gemcitabine-selected non-small cell lung cancer cell lines, H358-G200 and H460-G400. Expression profiling results indicated that there was evidence for changes in the expression of 134 genes in H358-G200 cells compared with its parental line, whereas H460-G400 cells exhibited 233 genes that appeared to be under- or overexpressed compared with H460 cells. However, only the increased expression of ribonucleotide reductase subunit 1 (RRM1), which appeared in both resistant cell lines, met predefined analysis criteria for genes to investigate further. Quantitative PCR analysis demonstrated H358-G200 cells had a greater than 125-fold increase in RRM1 RNA expression. Western blot analysis confirmed high levels of RRM1 protein in this line compared with the gemcitabine-sensitive parent. No significant change in the expression of RRM2 was observed in either cell line, although both gemcitabine-resistant cell lines had an approximate 3-fold increase in p53R2 protein. A partial revertant of H358-G200 cells had reduced levels of RRM1 protein (compared with G200 cells), without observed changes in RRM2 or p53R2. In vitro analyses of ribonucleotide reductase activity demonstrated that despite high levels of RRM1 protein, ribonucleotide reductase activity was not increased in H358-G200 cells when compared with parental cells. The cDNA encoding RRM1 from H358-G200 cells was cloned and sequenced but did not reveal the presence of any mutations. The results from this study indicate that the level of RRM1 may affect gemcitabine response. Furthermore, RRM1 may serve as a biomarker for gemcitabine response.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Proteínas Supressoras de Tumor/biossíntese , Carbono-Nitrogênio Ligases/biossíntese , Carbono-Nitrogênio Ligases/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Citosina Desaminase/biossíntese , Citosina Desaminase/genética , DCMP Desaminase/biossíntese , DCMP Desaminase/genética , Desoxicitidina Quinase/biossíntese , Desoxicitidina Quinase/genética , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ribonucleosídeo Difosfato Redutase , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...