Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0277725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040350

RESUMO

Avocado sunblotch viroid (ASBVd) is a subcellular pathogen of avocado that reduces yield from a tree, diminishes the appearance of the fruit by causing unsightly scarring and impedes trade because of quarantine conditions that are imposed to prevent spread of the pathogen via seed-borne inoculum. For countries where ASBVd is officially reported, permission to export fruit to another country may only be granted if an orchard can be demonstrated to be a pest free production site. The survey requirements to demonstrate pest freedom are usually defined in export protocols that have been mutually agreed upon by the trading partners. In this paper, we introduce a flexible statistical protocol for use in optimizing sampling strategies to establish pest free status from ASBVd in avocado orchards. The protocol, which is supported by an interactive app, integrates statistical considerations of multistage sampling of trees in orchards with a RT-qPCR assay allowing for detection of infection in pooled samples of leaves taken from multiple trees. While this study was motivated by a need to design a survey protocol for ASBVd, the theoretical framework and the accompanying app have broader applicability to a range of plant pathogens in which hierarchical sampling of a target population is coupled with pooling of material prior to diagnosis.


Assuntos
Persea , Vírus de Plantas , Viroides , Viroides/genética , RNA Viral , Vírus de Plantas/genética
2.
Persoonia ; 40: 221-238, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505002

RESUMO

Uromycladium tepperianum has been reported on over 100 species of Acacia, as well as on the closely related plant genera, Falcataria, Racosperma and Paraserianthes. Previous studies have indicated that U. tepperianum may represent a complex of host-specific, cryptic species. The phylogenetic relationships between 79 specimens of Uromycladium were determined based on a concatenated dataset of the Small Subunit, the Internal Transcribed Spacer and the Large Subunit regions of nuclear ribosomal DNA, and the mitochondrial cytochrome c oxidase subunit 3. This study showed that the host range of U. tepperianum s.str. was restricted to species of Acacia in the 'A. bivenosa group' sensu Chapman & Maslin (1992). An epitype of U. tepperianum on A. ligulata is designated to create a stable taxonomy for the application of this name. Sixteen novel species of Uromycladium are described, based on host preference, morphology and a phylogenetic species concept.

3.
Persoonia ; 34: 167-266, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26240451

RESUMO

Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

4.
Persoonia ; 35: 50-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26823628

RESUMO

Endoraecium is a genus of rust fungi that infects several species of Acacia in Australia, South-East Asia and Hawaii. This study investigated the systematics of Endoraecium from 55 specimens in Australia based on a combined morphological and molecular approach. Phylogenetic analyses were conducted on partitioned datasets of loci from ribosomal and mitochondrial DNA. The recovered molecular phylogeny supported a recently published taxonomy based on morphology and host range that divided Endoraecium digitatum into five species. Spore morphology is synapomorphic and there is evidence Endoraecium co-evolved with its Acacia hosts. The broad host ranges of E. digitatum, E. parvum, E. phyllodiorum and E. violae-faustiae are revised in light of this study, and nine new species of Endoraecium are described from Australia based on host taxonomy, morphology and phylogenetic concordance.

5.
Persoonia ; 35: 264-327, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26823636

RESUMO

Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

6.
J Virol Methods ; 198: 86-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24388931

RESUMO

Bead-based suspension array systems enable simultaneous fluorescence-based identification of multiple nucleic acid targets in a single reaction. This study describes the development of a novel approach to plant virus and vector diagnostics, a multiplexed 7-plex array that comprises a hierarchical set of assays for the simultaneous detection of begomoviruses and Bemisia tabaci, from both plant and whitefly samples. The multiplexed array incorporates genus, species and strain-specific assays, offering a unique approach for identifying both known and unknown viruses and B. tabaci species. When tested against a large panel of sequence-characterized begomovirus and whitefly samples, the array was shown to be 100% specific to the homologous target. Additionally, the multiplexed array was highly sensitive, efficiently and concurrently determining both virus and whitefly identity from single viruliferous whitefly samples. The detection limit for one assay within the multiplexed array that specifically detects Tomato yellow leaf curl virus-Israel (TYLCV-IL) was quantified as 200fg of TYLCV-IL DNA, directly equivalent to that of TYLCV-specific qPCR. Highly reproducible results were obtained over multiple tests. The flexible multiplexed array described in this study has great potential for use in plant quarantine, biosecurity and disease management programs worldwide.


Assuntos
Begomovirus/genética , Hemípteros/genética , Hemípteros/virologia , Insetos Vetores/genética , Doenças das Plantas/genética , Animais , Doenças das Plantas/virologia
7.
Persoonia ; 29: 55-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23606765

RESUMO

The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological approach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi.

8.
Persoonia ; 29: 63-77, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23606766

RESUMO

The genera Ustilago, Sporisorium and Macalpinomyces are a polyphyletic complex of plant pathogenic fungi. The four main morphological characters used to define these genera have been considered homoplasious and not useful for resolving the complex. This study re-evaluates character homology and discusses the use of these characters for defining monophyletic groups recovered from a reconstructed phylogeny using four nuclear loci. Generic delimitation of smut fungi based on their hosts is also discussed as a means for identifying genera within this group. Morphological characters and host specificity can be used to circumscribe genera within the Ustilago-Sporisorium-Macalpinomyces complex.

9.
Persoonia ; 29: 116-32, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23606769

RESUMO

Morphological characters within the Ustilago-Sporisorium-Macalpinomyces complex are defined explicitly. The genera Sporisorium and Anthracocystis are emended to reflect morphological synapomorphies. Three new genera, Langdonia, Stollia and Triodiomyces are described based on soral synapomorphies and host classification. The new classification of the Ustilago-Sporisorium-Macalpinomyces complex incorporates 142 new taxonomic combinations.

10.
J Virol Methods ; 155(2): 187-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18996414

RESUMO

A semi-automated, immunomagnetic capture-reverse transcription PCR (IMC-RT-PCR) assay for the detection of three pineapple-infecting ampeloviruses, Pineapple mealybug wilt-associated virus-1, -2 and -3, is described. The assay was equivalent in sensitivity but more rapid than conventional immunocapture RT-PCR. The assay can be used either as a one- or two-step RT-PCR and allows detection of the viruses separately or together in a triplex assay from fresh, frozen or freeze-dried pineapple leaf tissue. This IMC-RT-PCR assay could be used for high throughput screening of pineapple planting propagules and could easily be modified for the detection of other RNA viruses in a range of plant species, provided suitable antibodies are available.


Assuntos
Ananas/virologia , Closteroviridae/imunologia , Closteroviridae/isolamento & purificação , Separação Imunomagnética/métodos , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Closteroviridae/genética , Folhas de Planta/virologia , RNA Viral/análise , Sensibilidade e Especificidade
11.
Arch Virol ; 153(8): 1599-604, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18607672

RESUMO

A previously published partial sequence of pineapple bacilliform virus was shown to be from a retrotransposon (family Metaviridae) and not from a badnavirus as previously thought. Two newly discovered sequence groups isolated from pineapple were associated with bacilliform virions and were transmitted by mealybugs. Phylogenetic analyses indicated that they were members of new badnavirus species. A third caulimovirid sequence was also amplified from pineapple, but available evidence suggests that this DNA is not encapsidated, but more likely derived from an endogenous virus.


Assuntos
Ananas/virologia , Badnavirus/classificação , DNA Viral/análise , Genoma Viral , Badnavirus/genética , DNA Viral/genética , Genoma de Planta , Retroelementos
12.
Arch Virol ; 150(4): 787-96, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15785970

RESUMO

We have sequenced the complete genome of an isolate of Banana streak virus from banana cv. 'Mysore' and show that it is sufficiently different from a previously characterised isolate from cv. 'Obino l'Ewai' to warrant recognition as a distinct species, for which the name Banana streak Mysore virus (BSMysV) is proposed. The structure of the BSMysV genome was typical of badnaviruses in general, although ORF I had a non-conventional start codon. Evidence that at least part of the BSMysV genome is integrated in the B genome of cultivated Musa is presented and transmissibility by the mealybug Planococcus citri also demonstrated.


Assuntos
Badnavirus/classificação , Badnavirus/genética , DNA Viral/genética , Genoma de Planta , Musa/virologia , Integração Viral , Sequência de Bases , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Musa/genética , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase
13.
Plant Dis ; 85(4): 417-422, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30831975

RESUMO

Gooseberry vein banding disease (GVBD) affects Ribes species and cultivars worldwide. It is the second most important virus-like disease in these crops after black currant reversion disease. In this paper, we describe a bacilliform virus, Gooseberry vein banding associated virus (GVBAV), which is associated closely with GVBD, and provide evidence that GVBAV is a distinct species within the genus Badnavirus. Purified GVBAV particles were ca. 120 × 30 nm in size and contained dsDNA. The sequence of a 1.5-kb DNA fragment amplified from viral genomic DNA was similar to those of a wide range of badnaviruses and contained motifs characteristic of the RNase H domain of the badnavirus open reading frame (ORF) III polyprotein. Phylogenetic analyses suggest that GVBAV is most closely related to Spiraea yellow leaf spot virus. Using sequence derived from the polymerase chain reaction (PCR)-amplified DNA fragment, virus-specific primers were designed. These primers were used in PCR to assay for GVBAV in a range of Ribes germplasm affected with GVBD, with other unrelated virus-like diseases and viruses found in Ribes, and in healthy plants. GVBAV was detected in all of 58 GVBD-affected plants from diverse sources, but not from healthy Ribes plants nor from plants infected with other viruses.

14.
Mol Plant Pathol ; 2(4): 207-13, 2001 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20573008

RESUMO

Summary Banana streak virus strain OL (BSV-OL) commonly infects new Musa hybrids, and this infection is thought to arise de novo from integrated virus sequences present in the nuclear genome of the plant. Integrated DNA (Musa6+8 sequence) containing the whole genome of the virus has previously been cloned from cv. Obino l'Ewai (Musa AAB group), a parent of many of the hybrids. Using a Southern blot hybridization assay, we have examined the distribution and structure of integrated BSV-OL sequences in a range of Musa cultivars. For cv. Obino l'Ewai, almost every restriction fragment hybridizing to BSV-OL was predicted from the Musa6+8 sequence, suggesting that this is the predominant type of BSV-OL integrant in the genome. Furthermore, since only two junction fragments of Musa/BSV sequence were detected, and the Musa6+8 sequence is believed to be integrated as multiple copies in a tandem array, then the internal Musa spacer sequences must be highly conserved. Similarly sized restriction fragments were detected in four BB group cultivars, but not in six AA or AAA group cultivars, suggesting that the BSV-OL sequences are linked to the B-genome of Musa. We also provide evidence that cv. Williams (Musa AAA group) contains a distinct badnavirus integrant that is closely related to the 'dead' virus integrant previously characterized from Calcutta 4 (Musa acuminata ssp. burmannicoides). Our results suggest that the virus integrant from cv. Williams is linked to the A-genome, and the complexity of the hybridization patterns suggest multiple sites of integration and/or variation in sequence and structure of the integrants.

15.
Phytopathology ; 90(8): 921-7, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18944515

RESUMO

ABSTRACT Banana streak virus (BSV) is an important pathogen of bananas and plantains (Musa spp.) throughout the world. We have cloned and sequenced part of the genomes of four isolates of BSV from Australia, designated BSV-RD, BSV-Cav, BSV-Mys, and BSV-GF. These isolates originated from banana cvs. Red Dacca, Williams, Mysore, and Goldfinger, respectively. All clones contained a sequence covering part of open reading frame III and the intergenic region of the badnavirus genome. The sequences were compared with those of other badnaviruses, including BSV-Onne, a previously characterized isolate from Nigeria. The BSV-RD sequence was virtually identical to that of BSV-Onne, differing by only two nucleotides over 1,292 bp. However, BSV-Cav, -Mys, and -GF were divergent in nucleotide sequence. Phylogenetic analyses using conserved sequences in the ribonuclease H domain revealed that all BSV isolates were more closely related to each other than to any other badnavirus. BSV-Cav was most closely related to BSV-Onne, and there was 95.1% identity between the two amino acid sequences. Other relationships between the BSV isolates were less similar, with sequence identities ranging from 66.4 to 78.2%, which is a magnitude comparable to the distance between some of the recognized badnavirus species. Immunocapture-polymerase chain reaction assays have been developed, allowing specific detection and differentiation of the four isolates of BSV.

16.
Arch Virol ; 144(3): 577-92, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10226621

RESUMO

We have isolated a previously undescribed potexvirus from Alternanthera pungens (Amaranthaceae) in southern Queensland, Australia. This virus was shown to have a moderately wide experimental host range, infecting plants in nine of the twelve families tested. Using specific antibodies, a plate trapped antigen ELISA was developed, allowing detection of virions down to 0.8 microgram/ml of leaf extract. Virions averaged 554 nm long and had a capsid protein with a M(r) of 23.1 x 10(3). A portion of the genome containing the capsid protein ORF and 3' untranslated region was cloned and sequenced. From both serological and amino acid sequence comparisons, the virus was shown to be closely related to papaya mosaic potexvirus (PMV). To determine the taxonomic status of the virus, we assessed variation in the amino acid sequence of capsid proteins of distinct species within the potexvirus genus, as well as variation between strains of the same virus. When the core region of the capsid proteins were compared, distinct species had a maximum of 62.2% sequence identity, whereas strains had a minimum of 88.8% identity. By comparison, the core region of the capsid proteins of the Alternanthera virus and PMV had 79.8% identity. We have concluded that the Alternanthera virus is a different species from PMV, and its relationship with PMV resembles that of potyvirus subgroup members.


Assuntos
Frutas/virologia , Potexvirus/classificação , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , DNA Viral , Ensaio de Imunoadsorção Enzimática , Dados de Sequência Molecular , Filogenia , Potexvirus/genética , Potexvirus/imunologia , Potexvirus/patogenicidade , Coelhos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Vírion
17.
Phytopathology ; 87(7): 698-705, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18945091

RESUMO

ABSTRACT Using biochemical, serological, and cytopathological evidence, we have confirmed that banana bract mosaic virus (BBrMV) is a distinct member of the family Potyviridae. Virions of a Philippine isolate of BBrMV were purified from field-infected banana cv. Cardaba. Particles were approximately 725-nm long, banded at a density equivalent to 1.29 to 1.31 g/ml in cesium chloride equilibrium gradients, and had an A(260/280) of 1.17. Yields of about 4 mg/kg were obtained from fresh or frozen leaf midrib or lamina tissue. Three major protein species with sizes of 31, 37, and 39 kDa were resolved from dissociated virions, and all reacted specifically with polyclonal antibodies to BBrMV. Infected leaf cells contained typical pinwheel inclusions. Virus-specific cDNA was amplified from field samples by reverse transcription-polymerase chain reaction (RT-PCR) assay using potyvirus degenerate primers. In plate-trapped antigen-enzyme-linked immunosorbent assay (ELISA), weak serological relationships were demonstrated between BBrMV and other members of the family Potyviridae, including abaca mosaic (AbaMV), dasheen mosaic, maize dwarf mosaic, sorghum mosaic, sugarcane mosaic, and wheat streak mosaic viruses. Despite similarities in the symptoms caused by the two viruses, AbaMV was serologically distinct from BBrMV and reacted only weakly, or not at all, with BBrMV antibodies in double-antibody sandwich (DAS)-ELISA. No cross reactions were observed when RT-PCR products from the two viruses were examined by Southern blot hybridization using BBrMV- and AbaMV-specific digoxigenin-labeled DNA probes. BBrMV was consistently associated with banana bract mosaic disease, as assessed by DAS-ELISA and Southern blot hybridization using DNA probes. The known geographical distribution of BBrMV was extended to include India (Kokkan disease) and Sri Lanka.

18.
Virology ; 202(2): 1054-7, 1994 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-8030210

RESUMO

The complete nucleotide sequence of the nucleocapsid (N) gene of lettuce necrotic yellows virus (LNYV), the type member of the genus Cytorhabdovirus of plant rhabdoviruses, has been determined from cDNA clones of both the viral genomic and messenger RNAs. The previously identified N gene was adjacent to the 3' leader RNA and began at position 91 from the 3' end of the LNYV genome. Analysis of the sequence showed that the N mRNA contained a 78-nt 5' untranslated region, followed by a 1377-nt open reading frame (ORF) encoding a 459-amino-acid protein. This ORF was similar in size to the N protein ORFs of other rhabdoviruses. However, little if any direct sequence homology was found with N protein sequences of other rhabdoviruses. Short amino acid sequences were found to be conserved between the N proteins of LNYV and sonchus yellow net virus (SYNV), a member of the genus Nucleorhabdovirus of plant rhabdoviruses. Among them, a sequence of 24 amino acids which was similar between LNYV and SYNV N proteins corresponded to a region with high homology between isolates of vesicular stomatitis virus and rabies virus N protein sequences, the type members of the genera Vesiculovirus and Lyssavirus of animal rhabdoviruses, respectively.


Assuntos
Capsídeo/genética , Genes Virais , Rhabdoviridae/genética , Proteínas do Core Viral/genética , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/química , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...