Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3582, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678044

RESUMO

A single tunable filter simplifies complexity, reduces insertion loss, and minimizes size compared to frequency switchable filter banks commonly used for radio frequency (RF) band selection. Magnetostatic wave (MSW) filters stand out for their wide, continuous frequency tuning and high-quality factor. However, MSW filters employing electromagnets for tuning consume excessive power and space, unsuitable for consumer wireless applications. Here, we demonstrate miniature and high selectivity MSW tunable filters with zero static power consumption, occupying less than 2 cc. The center frequency is continuously tunable from 3.4 GHz to 11.1 GHz via current pulses of sub-millisecond duration applied to a small and nonvolatile magnetic bias assembly. This assembly is limited in the area over which it can achieve a large and uniform magnetic field, necessitating filters realized from small resonant cavities micromachined in thin films of Yttrium Iron Garnet. Filter insertion loss of 3.2 dB to 5.1 dB and out-of-band third order input intercept point greater than 41 dBm are achieved. The filter's broad frequency range, compact size, low insertion loss, high out-of-band linearity, and zero static power consumption are essential for protecting RF transceivers from interference, thus facilitating their use in mobile applications like IoT and 6 G networks.

2.
Nature ; 606(7914): 501-506, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650432

RESUMO

Deep neural networks with applications from computer vision to medical diagnosis1-5 are commonly implemented using clock-based processors6-14, in which computation speed is mainly limited by the clock frequency and the memory access time. In the optical domain, despite advances in photonic computation15-17, the lack of scalable on-chip optical non-linearity and the loss of photonic devices limit the scalability of optical deep networks. Here we report an integrated end-to-end photonic deep neural network (PDNN) that performs sub-nanosecond image classification through direct processing of the optical waves impinging on the on-chip pixel array as they propagate through layers of neurons. In each neuron, linear computation is performed optically and the non-linear activation function is realized opto-electronically, allowing a classification time of under 570 ps, which is comparable with a single clock cycle of state-of-the-art digital platforms. A uniformly distributed supply light provides the same per-neuron optical output range, allowing scalability to large-scale PDNNs. Two-class and four-class classification of handwritten letters with accuracies higher than 93.8% and 89.8%, respectively, is demonstrated. Direct, clock-less processing of optical data eliminates analogue-to-digital conversion and the requirement for a large memory module, allowing faster and more energy efficient neural networks for the next generations of deep learning systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...